Part Number Hot Search : 
080CT ISL12058 XP04878 CDLL4923 SS443A 27C100 1N4148 74HC405
Product Description
Full Text Search
 

To Download CY8C5248LTI-030 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  preliminary psoc ? 5: cy8c52 family datasheet programmable system-on-chip (psoc ? ) cypress semiconductor corporation ? 198 champion court ? san jose, ca 95134-1709 ? 408-943-2600 document number: 001-66236 rev. *a revised june 10, 2011 general description with its unique array of configurable blocks, psoc ? 5 is a true system-level solution prov iding microcontroller unit (mcu), memory, analog, and digital peripheral functions in a single chip. the cy 8c52 family offers a modern meth od of signal acquisition, sign al processing, and control with high accuracy, high bandwidth, a nd high flexibility. analog capability spans the range from thermo couples (near dc voltages) to ultrasonic signals. the cy8c52 family c an handle dozens of data acquisition channels and analog inputs on every gpio pin. the cy8c52 family is also a high-performance c onfigurable digital system with some part numbers including inter - faces such as usb, multimaster i 2 c, and controller area network (can), a communi cations protocol. in addition to communication interfaces, the cy8c52 family has an easy to configure logic array, flexible routing to all i/o pins, and a high-performance 32 -bit arm ? cortex?-m3 microprocessor core. designers can easily crea te system level designs using a rich library of preb uilt components an d boolean primitives using psoc creator?, a hierarchical schematic design entry tool. the cy8c52 family provides unparalleled opportunities for analog and digital bill of materials integration while easily acco mmodating last minute design changes throug h simple firmware updates. features ? 32-bit arm cortex-m3 cpu core ? dc to 40 mhz operation ? flash program memory, up to 256 kb, 100,000 write cycles, 20-year retention and multiple security features ? up to 64 kb sram memory ? 2-kb electrically erasable programmable read-only memory (eeprom) memory, 1 million cycl es, and 20 years retention ? 24-channel direct memory access (dma) with multilayer amba high-performance bus (ahb) bus access ? programmable chained descriptors and priorities ? high bandwidth 32-bit transfer support ? low voltage, ultra low power ? operating voltage range: 2.7 v to 5.5 v ? high efficiency boost regulator from 1.8-v input to 5.0-v output ? 5 ma at 6 mhz ? low power modes including: ? 3-a sleep mode with real time clock (rtc) and low-voltage detect (lvd) interrupt ? 1-a hibernate mode with ram retention ? versatile i/o system ? 28 to 72 i/os (62 gpios, eight sios, two usbios [ 1 ] ) ? any gpio to any digital or analog peripheral routability ? lcd direct drive from any gpio, up to 46 16 segments ? capsense ? support from any gpio [ 2 ] ? 1.2 v to 5.5 v i/o interface voltages, up to four domains ? maskable, independent irq on any pin or port ? schmitt trigger transistor-tra nsistor logic (ttl) inputs ? all gpios configurable as open drain high/low, pull up/down, high-z, or strong output ? 25 ma sink on sio ? digital peripherals ? 20 to 24 programmable logic device (pld) based universal digital blocks (udbs) ? full can 2.0b 16 rx, 8 tx buffers [ 1 ] ? full-speed (fs) usb 2.0 12 mbps using internal oscillator [ 1 ] ? four 16-bit configurable timer, counter, and pwm blocks ? library of standard peripherals ? 8-, 16-, 24-, and 32-bit timers, counters, and pwms ? spi, uart, and i 2 c ? many others available in catalog ? library of advanced peripherals ? cyclic redundancy check (crc) ? pseudo random sequence (prs) generator ? local interconnect network (lin) bus 2.0 ? quadrature decoder ? analog peripherals (2.7 v v dda 5.5 v) ? 1.024 v 1% internal voltage reference across ?40 c to +85 c (128 ppm/c) ? successive approximation register (sar) analog-to-digital converter (adc), 12-bit at 1 msps ? one 8-bit, 8-msps current dac (idac) or 1-msps voltage dac (vdac) ? two comparators with 95-ns response time ? capsense support ? programming, debug, and trace ? serial wire debug (swd) and single-wire viewer (swv) interfaces ? cortex-m3 flash patch and breakpoint (fpb) block ? cortex-m3 data watchpoint and trace (dwt) generates data trace information ? cortex-m3 instrumentation tr ace macrocell (itm) can be used for printf-style debugging ? dwt and itm blocks communicate with off-chip debug and trace systems via the swv interface ? bootloader programming supportable through i 2 c, spi, uart, usb, and other interfaces ? precision, programmable clocking ? 3 to 24 mhz internal oscillator over full temperature and voltage range ? 4 to 25 mhz crystal oscillator for crystal ppm accuracy ? internal pll clock generation up to 40 mhz ? 32.768 khz watch crystal oscillator ? low power internal oscillator at 1, 33, and 100 khz ? temperature and packaging ? ?40 c to +85 c degrees industrial temperature ? 68-pin qfn and 100-pin tqfp package options notes 1. this feature on select devices only. see ordering information on page 88 for details. 2. gpios with opamp outputs are not recommended for use with capsense.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 2 of 95 contents 1. architectural overview ..................................................... 3 2. pinouts ............................................................................... 5 3. pin descriptions ................................................................ 8 4. cpu ..................................................................................... 9 4.1 arm cortex-m3 cpu ................................................. 9 4.2 cache controller ...................................................... 11 4.3 dma and phub ....................................................... 11 4.4 interrupt controller ................................................... 14 5. memory ............................................................................. 16 5.1 static ram ............................................................... 16 5.2 flash program memory ............................................ 16 5.3 flash security ........................................................... 16 5.4 eeprom ...... ............... .............. .............. ........... ...... 16 5.5 memory map ............................................................ 17 6. system integration .......................................................... 18 6.1 clocking system ....................................................... 18 6.2 power system .......................................................... 21 6.3 reset ........................................................................ 24 6.4 i/o system and routing ........................................... 25 7. digital subsystem ........................................................... 31 7.1 example peripherals ................................................ 31 7.2 universal digital block .............................................. 35 7.3 udb array description ........ ..................................... 38 7.4 dsi routing interface descrip tion ............................ 38 7.5 can .......................................................................... 40 7.6 usb .......................................................................... 41 7.7 timers, counters, and pwms .................................. 42 7.8 i 2 c ............................................................................ 42 8. analog subsystem .......................................................... 43 8.1 analog routing ......................................................... 44 8.2 successive approximation ad c ............................... 46 8.3 comparators ............................................................. 46 8.4 lcd direct drive ...................................................... 47 8.5 capsense ................................................................. 48 8.6 temp sensor ............................................................ 48 8.7 dac .......................................................................... 48 9. programming, debug interfa ces, resources ........... ..... 49 9.1 debug port acquisition ............................................. 49 9.2 swd interface .......................................................... 49 9.3 debug features ........................................................ 51 9.4 trace features ......................................................... 51 9.5 swv interface .......................................................... 51 9.6 programming features ............................................. 51 9.7 device security ............... ......................................... 51 10. development support ................................................... 52 10.1 documentation ................ ....................................... 52 10.2 online ..................................................................... 52 10.3 tools ....................................................................... 52 11. electrical specifications ............................................... 53 11.1 absolute maximum rating s .................................... 53 11.2 device level specificatio ns .................................... 54 11.3 power regulators ................................................... 56 11.4 inputs and outputs ................................................. 58 11.5 analog peripherals ........ ......................................... 66 11.6 digital peripherals .................................................. 77 11.7 memory .................................................................. 80 11.8 psoc system resources ....................................... 82 11.9 clocking ......................... ......................................... 84 12. ordering information ..................................................... 88 12.1 part numbering conventions ................................. 88 13. packaging ....... .............. .............. .............. .............. ........ 89 14. acronyms ....................................................................... 91 15. reference documents .......... ......................................... 92 16. document conventions ................................................ 93 16.1 units of measure .................................................... 93 17. revision history ............................................................ 94 18. sales, solutions, and legal information ..................... 95
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 3 of 95 1. architectural overview introducing the cy8c52 family of ultra low power, flash programm able system-on-chip (psoc) devices, part of a scalable 8-bit psoc 3 and 32-bit psoc 5 platform. the cy8c52 family provides conf igurable blocks of analog, digi tal, and interconnect circuitry around a cpu subsystem. the comb ination of a cpu with a flexible analog subsystem, digital sub system, routing, and i/o enables a high level of integration in a wide variety of consumer, industrial, and medical applications. figure 1-1. simplified block diagram figure 1-1 on page 3 illustrates the major components of the cy8c52 family. they are: ? arm cortex-m3 cpu subsystem ? nonvolatile subsystem ? programming, debug, and test subsystem ? inputs and outputs ? clocking ? power ? digital subsystem ? analog subsystem psoc?s digital subsystem pr ovides half of its unique configurability. it connects a digital signal from any peripheral to any pin through the digital system interconnect (dsi). it also provides functional flexibility through an array of small, fast, low power udbs. psoc creator provides a library of pre-built and tested standard digital peripher als (uart, spi, lin, prs, crc, timer, counter, pwm, and, or, and so on) that are mapped to the udb array. the designer can also easily create a digital circuit using boolean primitives by means of graphical design entry. each udb contains programmable array logic (pal)/programmable logic device (pld) functionality, together with a small state machine engine to support a wide variety of peripherals. analog system lcd direct drive capsense temperature sensor adc 2 x cmp + - system wide resources program debug trace program & debug 8051 or cortex m3 cpu interrupt controller phub dma cache controller sram flash eeprom cpu system memory system system bus digital interconnect analog interconnect 2.7 to 5.5 v 1.8 to 3.6 v ( optional ) 425mhz (optional ) xtal osc 32.768 khz ( optional ) rtc timer imo clock tree wdt and wake ilo clocking system 1.8 v ldo smp por and lvd sleep power power management system usb phy gpios gpios gpios gpios gpios gpios sio gpios sios sar adc can 2.0 i2c master / slave universal digital block array ( 24 x udb) 4 x timer counter pwm fs usb 2.0 digital system udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb uart logic 12- bit pwm i2c slave 8- bit spi 12- bit spi logic 8- bit timer 16- bit prs udb 8- bit timer quadrature decoder 16 -bit pwm sequencer usage example for udb udb udb udb udb udb udb udb udb dac 22 to
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 4 of 95 in addition to the flexibility of the udb array, psoc also provides configurable digital blocks targeted at specific functions. for the cy8c52 family these blocks can include four 16-bit timers, counters, and pwm blocks; i 2 c slave, master, and multimaster; full-speed usb; and full can 2.0b. for more details on the peripherals see the ?example peripherals? section on page 31 of this data sheet. for information on udbs, dsi, and other digital blocks, see the ?digital subsystem? section on page 31 of this data sheet. psoc?s analog subsystem is the second half of its unique configurability. all analog performance is based on a highly accurate absolute voltage reference with less than 1% error over temperature and voltage. the configurable a nalog subsystem includes: ? analog muxes ? comparators ? voltage references ? adc ? dac all gpio pins can route analog signals into and out of the device using the internal analog bus. this allows the device to interface up to 62 discrete analog signals. the cy8c52 family offers a sar adc. featuring 12-bit conversions at up to 1 m samples per second, it also offers low nonlinearity and offset errors and snr better than 70 db. it is well suited for a variety of higher speed analog applications. a high-speed voltage or current dac supports 8-bit output signals at an update rate of 8 msps in idac and 1 msps in vdac. it can be routed out of any gpio pin. you can create higher resolution voltage pwm dac outputs using the udb array. this can be used to create a pulse width modulated (pwm) dac of up to 10 bits, at up to 48 khz. the digital dacs in each udb support pwm, prs, or delta-sigma algorithms with programmable widths. in addition to the adc and dac, the analog subsystem provides multiple comparators. see the ?analog subsystem? section on page 43 of this data sheet for more details. psoc?s cpu subsystem is built around a 32-bit three-stage pipelined arm cortex-m3 processor running at up to 40 mhz. the cortex-m3 includes a tight ly integrated nested vectored interrupt controller (nvic) and various debug and trace modules. the overall cpu subsystem incl udes a dma controller, flash cache, and ram. the nvic provides low latency, nested interrupts, and tail-chaining of interrupts and other features to increase the efficiency of interrupt handling. the dma controller enables peripherals to exchange data without cpu involvement. this allows the cpu to run slower (saving power) or use those cpu cycles to improve the performance of firmware algorithms. the flash cache also reduces system power consumption by allowing less frequent flash access. psoc?s nonvolatile subsystem consists of flash and byte-writeable eeprom. it provides up to 256 kb of on-chip flash. the cpu can reprogram individual blo cks of flash, enabling boot loaders. a powerful and flexible protection model secures the user's sensitive information, allowing selective memory block locking for read and write protection. two kb of byte-writable eeprom is availabl e on-chip to store application data. the three types of psoc i/o are ex tremely flexible. all i/os have many drive modes that are set at por. psoc also provides up to four i/o voltage domains through the v ddio pins. every gpio has analog i/o, lcd drive, flexible interrupt generation, slew rate control, and digital i/o capab ility. the sios on psoc allow v oh to be set independently of v ddio when used as outputs. when sios are in input mode they ar e high impedance. this is true even when the device is not powered or when the pin voltage goes above the supply voltage. this makes the sio ideally suited for use on an i 2 c bus where the psoc may not be powered when other devices on the bus are. the sio pins also have high current sink capability for applications such as led drives. the programmable input threshold featur e of the sio can be used to make the sio function as a gene ral purpose analog comparator. for devices with full-speed usb, the usb physical interface is also provided (usbio). when not using usb these pins may also be used for limited digital functionality and device programming. all the features of the psoc i/os are covered in detail in the ?i/o system and routing? section on page 25 of this data sheet. the psoc device incorporates flexible internal clock generators, designed for high stability and factory trimmed for high accuracy. the internal main oscillator (imo ) is the master clock base for the system and has 1% accuracy at 3 mhz. the imo can be configured to run from 3 mhz up to 24 mhz. multiple clock derivatives can be generated from the main clock frequency to meet application needs. the device provides a pll to generate system clock frequencies up to 40 mhz from the imo, external crystal, or external reference cloc k. it also contains a separate, very low-power internal low-speed oscillator (ilo) for the sleep and watchdog timers. a 32.768 khz external watch crystal is also supported for use in rtc a pplications. the clocks, together with programmable clock dividers, provide the flexibility to integrate most timing requirements. the cy8c52 family supports a wide supply operating range from 2.7 to 5.5 v. this allows operation from regulated supplies such as 3.3 v 10% or 5.0 v 10%, or di rectly from a wide range of battery types. it also provides an integrated high efficiency synchronous boost converter that can power the device from supply voltages as low as 1.8 v. the designer can use the boost converter to generate other voltages required by the device, such as a 3.3 v supply for lcd glass drive. the boost?s output is available on the v boost pin, allowing other devices in the application to be powered from the psoc. psoc supports a wide range of low-power modes. these include a 1-a hibernate mode with ram retention and a 3-a sleep mode with rtc. in the second mode the optional 32.768 khz watch crystal runs continuously and maintains an accurate rtc. power to all major f unctional blocks, incl uding the programmable digital and analog peripherals, can be controlled independently by firmware. this allows low-power background processing when some peripherals are not in use. this, in turn, provides a total device current of only 2 ma when the cpu is running at 6 mhz. the details of the psoc power modes are covered in the ?power system? section on page 21 of this data sheet.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 5 of 95 psoc uses a swd interface for programming, debug, and test. using this standard interface enables the designer to debug or program the psoc with a variety of hardware solutions from cypress or third party vendors. the cortex-m3 debug and trace modules include fpb, dwt, and itm. these modules have many features to help solve difficult debug and trace problems. details of the programming, tes t, and debugging interfaces are discussed in the ?programming, debug interfaces, resources? section on page 49 of this data sheet. 2. pinouts the vddio pin that supplies a particular set of pins is indicated by the black lines drawn on the pinout diagrams in figure 2-1 and figure 2-2 . using the vddio pins, a single psoc can support multiple interface voltage levels, eliminating the need for off-chip level shifters. each vddio may si nk up to 100 ma total to its associated i/o pins. on the 68-pin and 100-pin devices each set of vddio associated pins may sink up to 100 ma. the 48 pin device may sink up to 100 ma total for all vddio0 plus vddio2 associated i/o pins and 100 ma total for all vddio1 plus vddio3 associated i/o pins. figure 2-1. 68-pin qfn part pinout [3] (gpio) p2[6] (gpio) p2[7] (sio) p12[4] (sio) p12[5] vssb ind vboost vbat vssd xres (swdio, gpio) p1[0] (swdck, gpio) p1[1] (gpio) p1[2] (swv, gpio) p1[3] (gpio) p1[4] (gpio) p1[5] vddio1 (gpio) p1[6] vccd (opamp3+, gpio) p3[3] (gpio) p1[7] (sio) p12[6] (sio) p12[7] (usbio, d+, swdio) p15[6] (usbio, d-, swdck) p15[7] vddd vssd mhz xtal: xo mhz xtal: xi (idac1, gpio) p3[0] (idac3, gpio) p3[1] (opamp3-/extref1, gpio) p3[2] (opamp1-, gpio) p3[4] (opamp1+, gpio) p3[5] p0[3] (gpio, opamp0-/extref0) p0[2] (gpio, opamp0+) p0[1] (gpio, opamp0out) p0[0] (gpio, opamp2out) p12[3] (sio) p12[2] (sio) vssd vdda vssa vcca p15[3] (gpio, khz xtal: xi) p15[2] (gpio, khz xtal: xo) p12[1] (sio) p12[0] (sio) p3[7] (gpio, opamp3out) p3[6] (gpio, opamp1out) vddio3 p2[5] (gpio) vddio2 p2[4] (gpio) p2[3] (gpio) p2[2] (gpio) p2[1] (gpio) p2[0] (gpio) p15[5] (gpoi) p15[4] (gpio) vddd vssd vccd p0[7] (gpio, idac2) p0[6] (gpio, idac0) p0[5] (gpio, opamp2-) p0[4] (gpio, opamp2+) vddio0 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 qfn (top view) lines show vddio to i/o supply association [4] [4] notes 3. the center pad on the qfn package should be connected to digital ground (v ssd ) for best mechanical, thermal, and elec trical performance. if not connected to ground, it should be electrically float ed and not connected to any other signal. 4. pins are do not use (dnu) on devices without usb. the pin must be left floating.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 6 of 95 figure 2-2. 100-pin tqfp part pinout figure 2-3 and figure 2-4 show an example schematic and an example pcb layout , for the 100-pin tqfp part, for optimal analog performance on a 2-layer board. ? the two pins labeled vddd must be connected together. ? the two pins labeled vccd must be connected together, with capacitance added, as shown in figure 2-3 and power system on page 21 . the trace between the two vccd pins should be as short as possible. ? the two pins labeled vssd must be connected together. for information on circuit board layout issues for mixed signals, refer to the application note, an57821 - mixed signal circuit board layout considerations for psoc? 3 and psoc 5 . tqfp (gpio) p2[5] (gpio) p2[6] (gpio) p2[7] (i2c0: scl, sio) p12[4] (i2c0: sda, sio) p12[5] (gpio) p6[4] (gpio) p6[5] (gpio) p6[6] (gpio) p6[7] vssb ind vboost vbat vssd xres (gpio) p5[0] (gpio) p5[1] (gpio) p5[2] (gpio) p5[3] (swdio, gpio) p1[0] (swdck, gpio) p1[1] (gpio) p1[2] (swv, gpio) p1[3] (gpio) p1[4] (gpio) p1[5] vddio1 (gpio) p5[7] nc (opamp3-/extref1, gpio) p3[2] (gpio) p1[6] (gpio) p1[7] (sio) p12[6] (sio) p12[7] (gpio) p5[4] (gpio) p5[5] (gpio) p5[6] (usbio, d+, swdio) p15[6] (usbio, d-, swdck) p15[7] vddd vssd vccd nc (mhz xtal: xo, gpio) p15[0] (mhz xtal: xi, gpio) p15[1] (idac1, gpio) p3[0] (idac3, gpio) p3[1] (opamp3+, gpio) p3[3] (opamp1-, gpio) p3[4] (opamp1+, gpio) p3[5] vddio3 vddio0 p0[3] (gpio, opamp0-/extref0) p0[2] (gpio, opamp0+) p0[1] (gpio, opamp0out) p0[0] (gpio, opamp2out) p4[1] (gpio) p4[0] (gpio) p12[3] (sio) p12[2] (sio) vssd vdda vssa vcca nc nc nc nc nc nc p15[3] (gpio, khz xtal: xi) p15[2] (gpio, khz xtal: xo) p12[1] (sio, i2c1: sda) p12[0] (sio, i2c1: scl) p3[7] (gpio, opamp3out) p3[6] (gpio, opamp1out) vddio2 p2[4] (gpio) p2[3] (gpio) p2[2] (gpio) p2[1] (gpio) p2[0] (gpio) p15[5] (gpio) p15[4] (gpio) p6[3] (gpio) p6[2] (gpio) p6[1] (gpio) p6[0] (gpio) vddd vssd vccd p4[7] (gpio) p4[6] (gpio) p4[5] (gpio) p4[4] (gpio) p4[3] (gpio) p4[2] (gpio) p0[7] (gpio, idac2) p0[6] (gpio, idac0) p0[5] (gpio, opamp2-) p0[4] (gpio, opamp2+) 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50 49 lines show vddio to i/o supply association [5] [5] note 5. pins are do not use (dnu) on devices without usb. the pin must be left floating.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 7 of 95 figure 2-3. example schematic for 100-pin tqfp part with power connections note the two vccd pins must be connected together with as short a trace as possible. a trace under the device is recommended, as shown in figure 2-4 . vssb 10 ind 11 vboost 12 vbat 13 vssd 14 xres 15 vddd 37 vssd 38 vccd 39 vcca 63 vssa 64 vdda 65 vssd 66 vccd 86 vssd 87 vddd 88 sio, p12[2] 67 sio, p12[3] 68 p4[0] 69 p4[1] 70 oa2out, p0[0] 71 oa0out, p0[1] 72 oa0+, p0[2] 73 oa0-, ref0, p0[3] 74 vddio0 75 oa2+, p0[4] 76 oa2-, p0[5] 77 idac0, p0[6] 78 idac2, p0[7] 79 p4[2] 80 p4[3] 81 p4[4] 82 p4[5] 83 p4[6] 84 p4[7] 85 p5[0] 16 p5[1] 17 p5[2] 18 p5[3] 19 p1[0], swdio 20 p1[1], swdck 21 p1[2] 22 p1[3], swv 23 p1[4] 24 p1[5] 25 vddio1 26 p1[6] 27 p1[7] 28 p12[6], sio 29 p12[7], sio 30 p5[4] 31 p5[5] 32 p5[6] 33 p5[7] 34 usb d+, p15[6] 35 usb d-, p15[7] 36 p6[7] 9 p6[0] 89 p6[1] 90 p6[2] 91 p6[3] 92 p15[4] 93 p15[5] 94 p2[0] 95 p2[1] 96 p2[2] 97 p2[3] 98 p2[4] 99 vddio2 100 p2[5] 1 p2[6] 2 p2[7] 3 p12[4], sio 4 p12[5], sio 5 p6[4] 6 p6[5] 7 p6[6] 8 nc 40 nc 41 p15[0], mhzxout 42 p15[1], mhzxin 43 p3[0], idac1 44 p3[1], idac3 45 p3[2], oa3-, ref1 46 p3[3], oa3+ 47 p3[4], oa1- 48 p3[5], oa1+ 49 vddio3 50 oa1out, p3[6] 51 oa3out, p3[7] 52 sio, p12[0] 53 sio, p12[1] 54 khzxout, p15[2] 55 khzxin, p15[3] 56 nc 57 nc 58 nc 59 nc 60 nc 61 nc 62 u2 cy8c55xx vssd vdda vcca vccd vssd vddd vssd vddd vddd vssd p32 vssa vssa vssd vssd vssd vssd 0.1 uf c8 vssd vddd vddd vddd vddd vssa vssa vddd vssd 1 uf c9 0.1 uf c10 0.1 uf c11 0.1 uf c14 0.1 uf c16 0.1 uf c12 0.1 uf c6 0.1 uf c2 1 uf c15 1 uf c1 vssd vddd vssd vdda vssd vccd 10 uf, 6.3 v c13 1 uf c17 vssa vdda
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 8 of 95 figure 2-4. example pcb layout for 100-pin tqfp part for optimal analog performance 3. pin descriptions idac0. low resistance output pin for high idac. extref0, extref1. external reference input to the analog system. gpio. general purpose i/o pin provides interfaces to the cpu, digital peripherals, analog peripherals, interrupts, lcd segment drive, and capsense [ 6 ] . ind. inductor connection to boost pump. khz xtal: xo, khz xtal: xi. 32.768 khz crystal oscillator pin. mhz xtal: xo, mhz xtal: xi. 4 to 25 mhz crystal oscillator pin. if a crystal is not used, th en xi must be shorted to ground and xo must be left floating. sio. special i/o provides interfaces to the cpu, digital peripherals and interrupts with a programmable high threshold voltage, analog comparator, high sink current, and high impedance state when the device is unpowered. swdck. serial wire debug clock programming and debug port connection. swdio. serial wire debug input and output programming and debug port connection. swv. single wire viewer output. usbio, d+. provides d+ connection directly to a usb 2.0 bus. may be used as a digital i/o pin; it is powered from v ddd instead of from a v ddio . pins are do not use (dnu) on devices without usb. usbio, d-. provides d- connection directly to a usb 2.0 bus. may be used as a digital i/o pin; it is powered from v ddd instead of from a v ddio . pins are do not use (dnu) on devices without usb. v boost . power sense connection to boost pump. v bat . battery supply to boost pump. v cca . output of analog core regulator and input to analog core. requires a 1 f capacitor to v ssa . regulator output not for external use. v ccd . output of digital core regulator and input to digital core. the two v ccd pins must be shorted together, with the trace between them as short as possible, and a 1-f capacitor to v ssd ; see power system on page 21 . regulator output not for external use. v dda . supply for all analog peripherals and analog core regulator. v dda must be the highest voltage present on the device. all other supply pins must be less than or equal to v dda . v ddd . supply for all digital peripherals and digital core regulator. v ddd must be less than or equal to v dda . v ssa . ground for all analog peripherals. v ssb . ground connection for boost pump. v ssd . ground for all digital logic and i/o pins. v ddio0 , v ddio1 , v ddio2 , v ddio3 . supply for i/o pins. each v ddio must be tied to a valid operating voltage (2.7 v to 5.5 v), and must be less than or equal to v dda . xres . external reset pin. active low with internal pull-up. vddd vssd vdda vssa vssd plane vssa plane note 6. gpios with opamp outputs are not recommended for use with capsense.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 9 of 95 4. cpu 4.1 arm cortex-m3 cpu the cy8c52 family of devices has an arm cortex-m3 cpu core. the cortex-m3 is a low power 32-bit three-stage pipelined harvard architecture cpu that delivers 1.25 dmips/ mhz. it is intended for deeply embedded appl ications that require fast interrupt hand ling features. figure 4-1. arm cortex-m3 block diagram the cortex-m3 cpu subsystem includes these features: ? arm cortex-m3 cpu ? programmable nested vectored interrupt controller (nvic), tightly integrated with the cpu core ? full-featured debug and trace module, tightly integrated with the cpu core ? up to 256 kb of flash memory, 2 kb of eeprom, and 64 kb of sram ? cache controller ? peripheral hub (phub) ? dma controller 4.1.1 cortex-m3 features the cortex-m3 cpu features include: ? 4-gb address space. predefined address regions for code, data, and peripherals. multiple buses for efficient and simultaneous accesses of instructions, data, and peripherals. nested vectored interrupt controller (nvic) debug block (swd) trace port interface unit (tpiu) interrupt inputs swd swv cortex m3 cpu core i- bus s- bus d- bus 256 kb flash cache 32 kb sram dma ahb bridge and bus matrix phub gpio prog. digital prog. analog special functions peripherals ahb spokes ahb ahb ahb bus matrix cortex m3 wrapper c- bus bus matrix 32 kb sram bus matrix data watchpoint and trace (dwt) instrumentation trace module (itm) flash patch and breakpoint (fpb)
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 10 of 95 ? the thumb ? -2 instruction set, wh ich offers arm-level performance at thumb-level code density. this includes 16-bit and 32-bit instructions. advanced instructions include: ? bit-field control ? hardware multiply and divide ? saturation ? if-then ? wait for events and interrupts ? exclusive access and barrier ? special register access the cortex-m3 does not support arm instructions. ? bit-band support. atomic bit-level write and read operations. ? unaligned data storage and access. contiguous storage of data of different byte lengths. ? operation at two privilege levels (privileged and user) and in two modes (thread and handler). some instructions can only be executed at the privileged level. there are also two stack pointers: main (msp) and pr ocess (psp). these features support a multitasking operating system running one or more user-level processes. ? extensive interrupt and system exception support. 4.1.2 cortex-m3 operating modes the cortex-m3 operates at either the privileged level or the user level, and in either the thread mode or the handler mode. because the handler mode is only enabled at the privileged level, there are actually only three states, as shown in table 4-1 . at the user level, access to certai n instructions, special registers, configuration registers, and debugging components is blocked. attempts to access them cause a fault exception. at the privileged level, access to all instructions and registers is allowed. the processor runs in the handler mode (always at the privileged level) when handling an exception, and in the thread mode when not. 4.1.3 cpu registers the cortex-m3 cpu registers are listed in ta b l e 4-2 . registers r0-r15 are all 32 bits wide. table 4-1. operational level condition privileged user running an exception handler mode not used running main program thread mode thread mode table 4-2. cortex m3 cpu registers register description r0-r12 general purpose registers r0-r12 have no special architecturally defined uses. most instructions that specify a general purpose register specify r0-r12. ? low registers: registers r0-r7 are accessible by all instru ctions that specify a general purpose register. ? high registers: registers r8-r12 are accessible by all 32-bit instructions that specify a general purpose register; they are not accessible by all 16-bit instructions. r13 r13 is the stack pointer register. it is a banked register that switches between two 32-bit stack pointers: the main stack pointer (msp) and the process stack pointer (psp). the psp is used only when the cpu operates at the user level in thread mode. the msp is used in all other privilege levels and modes. bits[0:1] of the sp are ignored and considered to be 0, so the sp is always aligned to a word (4 byte) boundary. r14 r14 is the link register (lr). the lr stores the return address when a subroutine is called. r15 r15 is the program counter (pc). bit 0 of the pc is ignored and considered to be 0, so instructions are always aligned to a half word (2 byte) boundary. xpsr the program status registers are divided into three status registers, which are accessed either together or separately: ? application program st atus register (apsr) holds program execution status bits such as zero, carry, negative, in bits[27:31]. ? interrupt program status register (ipsr) holds the current exception number in bits[0:8]. ? execution program stat us register (epsr) holds control bits for interrupt continuable and if-then instructions in bits[10:15] and [25:26]. bit 24 is alwa ys set to 1 to indicate thumb mode. trying to clear it causes a fault exception. primask a 1-bit interrupt mask register. when set, it allows only the nonmaskable interrupt (nmi) and hard fault exception. all other exceptions and interrupts are masked. faultmask a 1-bit interrupt mask register. when set, it allows only the nmi. all other exceptions and interrupts are masked. basepri a register of up to nine bits that define the masking priority level. when set, it disables all interrupts of the same or higher priority value. if set to 0 then the masking function is disabled.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 11 of 95 4.2 cache controller the cy8c52 family has a 1 kb cache between the cpu and the flash memory. this improves instruction execution rate and reduces system power consumption by requiring less frequent flash access. 4.3 dma and phub the phub and the dma controller are responsible for data transfer between the cpu and peripherals, and also data transfers between peripherals. the phub and dma also control device configuration during boot. the phub consists of: ? a central hub that includes th e dma controller, arbiter, and router ? multiple spokes that radiate outward from the hub to most peripherals there are two phub masters: the cpu and the dma controller. both masters may initiate transactions on the bus. the dma channels can handle peripheral communication without cpu intervention. the arbiter in t he central hub determines which dma channel is the highest priority if there are multiple requests. 4.3.1 phub features ? cpu and dma controller are both bus masters to the phub ? eight multi-layer ahb bus parallel access paths (spokes) for peripheral access ? simultaneous cpu and dma access to peripherals located on different spokes ? simultaneous dma source and de stination burst transactions on different spokes ? supports 8-, 16-, 24-, and 32-bit addressing and data 4.3.2 dma features ? 24 dma channels ? each channel has one or more transaction descriptors (tds) to configure channel behavior. up to 127 total tds can be defined ? tds can be dynamically updated ? eight levels of priority per channel ? any digitally routable signal, the cpu, or another dma channel, can trigger a transaction ? each channel can generate up to two interrupts per transfer ? transactions can be stalled or canceled ? supports transaction size of infinite or 1 to 64 k bytes ? large transactions may be broken into smaller bursts of 1 to 127 bytes ? tds may be nested and/or chained for complex transactions control a 2-bit register for controlling the operating mode. bit 0: 0 = privileged level in thread mode, 1 = user level in thread mode. bit 1: 0 = default stack (msp) is used, 1 = alternate stack is used. if in thread mode or user level then the alternate stack is the psp. there is no alternate stack for handler mode; the bit must be 0 while in handler mode. table 4-2. cortex m3 cpu registers (continued) register description table 4-3. phub spokes and peripherals phub spokes peripherals 0 sram 1 ios , picu 2 phub local configuration, power manager , clocks , ic , eeprom , flash programming interface 3 analog interface and trim , decimator 4 usb , can , i 2 c , timers, counters, and pwms 5 reserved 6 udbs group 1 7 udbs group 2
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 12 of 95 4.3.3 priority levels the cpu always has higher priority than the dma controller when their accesses require the same bus resources. due to the system architecture, the cpu c an never starve the dma. dma channels of higher priority (lower priority number) may interrupt current dma transfers. in the case of an interrupt, the current transfer is allowed to complete its current transaction. to ensure latency limits when multiple dma accesses are requested simultaneously, a fairness algorithm guarantees an interleaved minimum percentage of bus bandwidth for priority levels 2 through 7. priority levels 0 and 1 do not take part in the fairness algorithm and may use 100% of the bus bandwidth. if a tie occurs on two dma requests of the same priority level, a simple round robin method is used to evenly share the allocated bandwidth. the round robin allocation can be disabled for each dma channel, allowing it to always be at the head of the line. priority levels 2 to 7 are guaranteed the minimum bus bandwidth shown in ta b l e 4-4 after the cpu and dma priority levels 0 and 1 have satisfied their requirements. when the fairness algorithm is disabled, dma access is granted based solely on the priority leve l; no bus bandwidth guarantees are made. 4.3.4 transaction modes supported the flexible configuration of eac h dma channel and the ability to chain multiple channels allow the creation of both simple and complex use cases. general us e cases include, but are not limited to: 4.3.4.1 simple dma in a simple dma case, a single td transfers data between a source and sink (peripherals or memory location). the basic timing diagrams of dma read and write cycles are shown in figure 4-2 . for more description on ot her transfer modes, refer to the technical reference manual. figure 4-2. dma timing diagram 4.3.4.2 auto repeat dma auto repeat dma is typically used when a static pattern is repetitively read from system memo ry and written to a peripheral. this is done with a single td that chains to itself. 4.3.4.3 ping pong dma a ping pong dma case uses double buffering to allow one buffer to be filled by one client while an other client is consuming the data previously received in the other buffer. in its simplest form, this is done by chaining two tds together so that each td calls the opposite td when complete. 4.3.4.4 circular dma circular dma is similar to ping pong dma except it contains more than two buffers. in this case there are multiple tds; after the last td is complete it chai ns back to the first td. 4.3.4.5 indexed dma in an indexed dma case, an external master requires access to locations on the system bus as if those locations were shared memory. as an example, a peri pheral may be configured as an spi or i 2 c slave where an address is received by the external master. that address becomes an index or offset into the internal system bus memory space. this is accomplished with an initial ?address fetch? td that reads the target address location from the peripheral and writes that va lue into a subsequent td in the chain. this modifies the td chain on the fly. when the ?address fetch? td completes it moves on to the next td, which has the new address information embedded in it. this td then carries out the data transfer with the address location required by the external master. table 4-4. priority levels priority level % bus bandwidth 0 100.0 1 100.0 2 50.0 3 25.0 4 12.5 5 6.2 6 3.1 7 1.5 clk addr 16/32 write data ready basic dma read transfer without wait states ab data (a) address phase data phase ab address phase data phase clk write data ready data (a) basic dma write transfer without wait states addr 16/32
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 13 of 95 4.3.4.6 scatter gather dma in the case of scatter gather dma, there are multiple noncontiguous sources or destin ations that are required to effectively carry out an overall dma transaction. for example, a packet may need to be transmitted off of the device and the packet elements, including the header, payload, and trailer, exist in various noncontiguous locations in memory. scatter gather dma allows the segments to be concatenated together by using multiple tds in a chain. the chain gathers the data from the multiple locations. a similar concept applies for the reception of data onto the device. certain parts of the received data may need to be scattered to various locati ons in memory for software processing convenience. each td in the chain specifies the location for each discrete element in the chain. 4.3.4.7 packet queuing dma packet queuing dma is similar to scatter gather dma but specifically refers to packet protocols. with these protocols, there may be separate configurat ion, data, and status phases associated with sending or receiving a packet. for instance, to transmit a packet, a memory mapped configuration register can be written inside a peripheral, specifying the overall length of the ensuing data phase. the cpu can set up this conf iguration informati on anywhere in system memory and copy it with a simple td to the peripheral. after the configuration phase, a data phase td (or a series of data phase tds) can begin (potentially using scatter gather). when the data phase td(s) finish, a status phas e td can be invoked that reads some memory mapped status information from the peripheral and copies it to a location in system memory specified by the cpu for later inspection. multiple sets of configuration, data, and status phase ?subchains? can be st rung together to create larger chains that transmit multiple packets in this way. a similar concept exists in the opposite direction to receive the packets. 4.3.4.8 nested dma one td may modify another td, as the td configuration space is memory mapped similar to any other peripheral. for example, a first td loads a second td?s configuration and then calls the second td. the second td moves data as required by the application. when complete, the second td calls the first td, which again updates the second td?s configuration. this process repeats as often as necessary.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 14 of 95 4.4 interrupt controller the cortex-m3 nvic supports 16 system exceptions and 32 interrupts from peripherals, as shown in table 4-5 . bit 0 of each exception vector i ndicates whether the exception is executed using arm or thumb instructions. because the cortex-m3 only supports thumb instructions, this bit must always be 1. the cortex-m3 non maskable interrupt (nmi) input can be routed to any pin, via the dsi, or disconnected from all pins. see ?dsi routing interface description? section on page 38 . the nested vectored interrupt controller (nvic) handles interrupts from the peripherals, and passes the interrupt vectors to the cpu. it is closely integrated with the cpu for low latency interrupt handling. features include: ? 32 interrupts. multiple so urces for each interrupt. ? configurable number of priority levels: from 3 to 8. ? dynamic reprioritization of interrupts. ? priority grouping. this allows selection of preempting and non preempting interrupt levels. ? support for tail-chaining, and late arrival, of interrupts. this enables back-to-back interrupt processing without the overhead of state saving and restoration between interrupts. ? processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead. if the same priority level is assi gned to two or more interrupts, the interrupt with the lower vector number is executed first. each interrupt vector may choose from three interrupt sources: fixed function, dma, and udb. the fixed function interrupts are direct connections to the most common interrupt sources and provide the lowest resource cost connection. the dma interrupt sources provide direct connections to the two dma interrupt sources provided per dma channel. the third interrupt source for vectors is from the udb digital routing array. this allows any digital signal available to the udb array to be used as an interrupt source. all interrupt sources may be routed to any interrupt vector using the udb interrupt source connections. table 4-5. cortex-m3 exceptions and interrupts exception number exception type priority exception table address offset function 0x00 starting value of r13 / msp 1 reset ?3 (highest) 0x04 reset 2 nmi ?2 0x08 non maskable interrupt 3 hard fault ?1 0x0c all classes of fault, when the corresponding fault handler cannot be activated because it is currently disabled or masked 4 memmanage programmable 0x10 memory management fault, for example, instruction fetch from a nonexecutable region 5 bus fault programmable 0x14 error response received from the bus system; caused by an instruction prefetch abort or data access error 6 usage fault programmable 0x18 typically caused by invalid instructions or trying to switch to arm mode 7 ? 10 ? ? 0x1c ? 0x28 reserved 11 svc programmable 0x2c system service call via svc instruction 12 debug monitor programmable 0x30 debug monitor 13 ? ? 0x34 reserved 14 pendsv programmable 0x38 deferred request for system service 15 systick programmable 0x3c system tick timer 16 ? 47 irq programmable 0x40 ? 0x3fc peripheral interrupt request #0 ? #31 table 4-6. interrupt vector table interrupt # cortex-m3 exception # fixed function dma udb 0 16 low voltage detect (lvd) phub_termout0[0] udb_intr[0] 1 17 cache phub_termout0[1] udb_intr[1] 2 18 reserved phub_termout0[2] udb_intr[2] 3 19 sleep (pwr mgr) phub_termout0[3] udb_intr[3] 4 20 picu[0] phub_termout0[4] udb_intr[4] 5 21 picu[1] phub_termout0[5] udb_intr[5] 6 22 picu[2] phub_termout0[6] udb_intr[6] 7 23 picu[3] phub_termout0[7] udb_intr[7] 8 24 picu[4] phub_termout0[8] udb_intr[8]
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 15 of 95 9 25 picu[5] phub_termout0[9] udb_intr[9] 10 26 picu[6] phub_termout0[10] udb_intr[10] 11 27 picu[12] phub_termout0[11] udb_intr[11] 12 28 picu[15] phub_termout0[12] udb_intr[12] 13 29 comparators combined phub_termout0[13] udb_intr[13] 14 30 reserved phub_termout0[14] udb_intr[14] 15 31 i 2 c phub_termout0[15] udb_intr[15] 16 32 can phub_termout1[0] udb_intr[16] 17 33 timer/counter0 phub_termout1[1] udb_intr[17] 18 34 timer/counter1 phub_termout1[2] udb_intr[18] 19 35 timer/counter2 phub_termout1[3] udb_intr[19] 20 36 timer/counter3 phub_termout1[4] udb_intr[20] 21 37 usb sof int phub_termout1[5] udb_intr[21] 22 38 usb arb int phub_termout1[6] udb_intr[22] 23 39 usb bus int phub_termout1[7] udb_intr[23] 24 40 usb endpoint[0] phub_termout1[8] udb_intr[24] 25 41 usb endpoint data phub_termout1[9] udb_intr[25] 26 42 reserved phub_termout1[10] udb_intr[26] 27 43 reserved phub_termout1[11] udb_intr[27] 28 44 reserved phub_termout1[12] udb_intr[28] 29 45 decimator int phub_termout1[13] udb_intr[29] 30 46 phub_err_int phub_termout1[14] udb_intr[30] 31 47 eeprom_fault_int phub_termout1[15] udb_intr[31] table 4-6. interrupt vector table (continued) interrupt # cortex-m3 exception # fixed function dma udb
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 16 of 95 5. memory 5.1 static ram cy8c52 static ram (sram) is used for temporary data storage. code can be executed at full sp eed from the portion of sram that is located in the code space. this process is slower from sram above 0x20000000. the device provides up to 64 kb of sram. the cpu or the dma contro ller can access all of sram. the sram can be accessed simultaneously by the cortex-m3 cpu and the dma controller if accessing different 32-kb blocks. 5.2 flash program memory flash memory in psoc devices provides nonvolatile storage for user firmware, user configuration data and bulk data storage. the main flash memory area contains up to 256 kb of user program space. up to an additional 32 kb of flash space is available for storing device configuration data and bulk user data. user code may not be run out of this flash memory section. the flash output is 9 bytes wide with 8 bytes of data and 1 additional byte. the cpu or dma controller read both user code and bulk data located in flash through the ca che controller. this provides higher cpu performance. flash programming is performed through a special interface and preempts code execution out of flash. code execution out of cache may continue during flash programming as long as that code is contained inside the cache. the flash programming interfac e performs flash erasing, programming and setting code protection levels. flash in system serial programming (issp), typically used for production programming, is possible through the swd interface. in-system programming, typically used for bootloaders, is also possible using serial interfaces such as i 2 c, usb, uart, and spi, or any communications protocol. 5.3 flash security all psoc devices include a flexible flash protection model that prevents access and visibility to on-chip flash memory. this prevents duplication or reverse en gineering of proprietary code. flash memory is organized in blo cks, where each block contains 256 bytes of program or data and 32 bytes of configuration or general-purpose data. the device offers the ability to assign one of four protection levels to each row of flash. table 5-1 lists the protection modes available. flash protection levels can only be changed by performing a complete flash erase. the full protection and field upgrade settings disable external access (through a debugging tool such as psoc creator, for example). if your application requires code update through a boot loader, then use the field upgrade setting. use the unprotected setting only when no security is needed in your application. the psoc device also offers an advanced security feature called device security which permanently disables all test, programming, and debug ports, protecting your application from external access (see the ?device security? section on page 51 ). for more information on how to take full advantage of the security features in psoc, see the psoc 5 trm. disclaimer note the following details of the fl ash code protection features on cypress devices. cypress products meet the specifications contained in their particular cypress data sheets. cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. there may be methods, unknown to cypress, that can breach the code protection features. an y of these methods, to our knowledge, would be dishonest and possibly illegal. neither cypress nor any other semiconductor manufacturer can guarantee the security of their code. code protection does not mean that we are guaranteeing the product as ?unbreakable.? cypress is willing to work with the customer who is concerned about the integrity of their code. code protection is constantly evolving. we at cypress are committed to continuously improving the code protecti on features of our products. 5.4 eeprom psoc eeprom memory is a byte addressable nonvolatile memory. the cy8c52 has 2 kb of eeprom memory to store user data. reads from eeprom are random access at the byte level. reads are done directly; wr ites are done by sending write commands to an eeprom progra mming interfac e. cpu code execution can continue from flash during eeprom writes. eeprom is erasable and writeab le at the row level. the eeprom is divided into two sect ions, each containing 64 rows of 16 bytes each. the cpu cannot execute out of eeprom. table 5-1. flash protection protection setting allowed not allowed unprotected external read and write + internal read and write ? factory upgrade external write + internal read and write external read field upgrade internal read and write external read and write full protection internal read external read and write + internal write
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 17 of 95 5.5 memory map the cortex-m3 has a fixed address map, which allows peripherals to be accessed by simple memory access instructions. 5.5.1 address map the 4-gb address space is divided into the ranges shown in ta b l e 5-2 : the bit-band feature allows individual bits in words in the bit-band region to be read or writte n as atomic operations. this is done by reading or writing bit 0 of corresponding words in the bit-band alias region. for example, to set bit 3 in the word at address 0x20000000, write a 1 to address 0x2200000c. to test the value of that bit, read address 0x2200000c and the result is either 0 or 1 depending on the value of the bit. most memory accesses done by t he cortex-m3 are aligned, that is, done on word (4-byte) boundary addresses. unaligned accesses of words and 16-bit half-words on nonword boundary addresses can also be done, although they are less efficient. 5.5.2 address map and cortex-m3 buses the icode and dcode buses are used only for accesses within the code address range, 0 - 0x1fffffff. the system bus is used for data accesses and debug accesses within the ranges 0x20000000 - 0xdfffffff and 0xe0100000 - 0xffffffff. instruction fetches can also be done within the range 0x20000000 - 0x3fffffff, although these can be slower than instruction fetches via the icode bus. the private peripheral bus (ppb) is used within the cortex-m3 to access system control registers and debug and trace module registers. table 5-2. address map address range size use 0x00000000 ? 0x1fffffff 0.5 gb program code. this includes the exception vector table at power up, which starts at address 0. 0x20000000 ? 0x3fffffff 0.5 gb static ram. this includes a 1 mbyte bit-band region starting at 0x20000000 and a 32 mbyte bit-band alias region starting at 0x22000000. 0x40000000 ? 0x5fffffff 0.5 gb peripherals. this includes a 1 mbyte bit-band region starting at 0x40000000 and a 32 mbyte bit-band alias region starting at 0x42000000. 0x60000000 ? 0x9fffffff 1 gb external ram. 0xa0000000 ? 0xdfffffff 1 gb external peripherals. 0xe0000000 ? 0xffffffff 0.5 gb internal peripherals, including the nvic and debug and trace modules. table 5-3. peripheral data address map address range purpose 0x00000000 ? 0x0003ffff 256 k flash 0x1fff8000 ? 0x1fffffff 32 k sram in code region 0x20000000 ? 0x20007fff 32 k sram in sram region 0x40004000 ? 0x400042ff clocking, plls, and oscillators 0x40004300 ? 0x400043ff power management 0x40004500 ? 0x400045ff ports interrupt control 0x40004700 ? 0x400047ff flash programming interface 0x40004800 ? 0x400048ff cache controller 0x40004900 ? 0x400049ff i 2 c controller 0x40004e00 ? 0x40004eff decimator 0x40004f00 ? 0x40004fff fixed timer/counter/pwms 0x40005000 ? 0x400051ff i/o ports control 0x40005800 ? 0x40005fff analog subsystem interface 0x40006000 ? 0x400060ff usb controller 0x40006400 ? 0x40006fff udb configuration 0x40007000 ? 0x40007fff phub configuration 0x40008000 ? 0x400087ff eeprom 0x4000a000 ? 0x4000a400 can 0x40010000 ? 0x4001ffff digital interconnect configuration 0xe0000000 ? 0xe00fffff cortex-m3 ppb registers, including nvic, debug, and trace table 5-3. peripheral data address map (continued) address range purpose
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 18 of 95 6. system integration 6.1 clocking system the clocking system generates, di vides, and distributes clocks throughout the psoc system. for the majority of systems, no external crystal is required. the imo and pll together can generate up to a 40 mhz clock, accurate to 4% over voltage and temperature. additional internal and external clock sources allow each design to optimize accuracy, power, and cost. all of the system clock sources can be used to generate other clock frequencies in the 16-bit clock dividers and udbs for anything you want, for example a uart baud rate generator. clock generation and distribution is automatically configured through the psoc creator ide graphical interface. this is based on the complete system?s requ irements. it greatly speeds the design process. psoc creator allows designers to build clocking systems with minimal input. th e designer can s pecify desired clock frequencies and accuracies, and the software locates or builds a clock that meets the r equired specifications. this is possible because of the programmability inherent psoc. key features of the cl ocking system include: ? seven general purpose clock sources ? 3 to 24 mhz imo, 4% at 3 mhz ? 4 to 25 mhz external crystal oscillator (mhzeco) ? clock doubler provides a doubled clock frequency output for the usb block, see usb clock domain on page 21 . ? dsi signal from an external i/o pin or other logic ? 24 to 40 mhz fractional phase-locked loop (pll) sourced from imo, mhzeco, or dsi ? 1 khz, 33 khz, 100 khz ilo for watchdog timer (wdt) and sleep timer ? 32.768 khz external crystal oscillator (eco) for rtc ? independently sourced clock dividers in all clocks ? eight 16-bit clock divider s for the digital system ? four 16-bit clock dividers for the analog system ? dedicated 16-bit divider for the cpu bus and cpu clock ? automatic clock configuration in psoc creator table 6-1. oscillator summary source fmin tolerance at fmin fmax tolerance at fmax startup time imo 3 mhz 4% over voltage and temperature 24 mhz 10% 10 s max mhzeco 4 mhz crystal dependent 25 mhz crystal dependent 5 ms typ, max is crystal dependent dsi 0 mhz input dependent 40 mhz input dependent input dependent pll 24 mhz input dependent 40 mhz input dependent 250 s max doubler 48 mhz input dependent 48 mhz input dependent 1 s max ilo 1 khz ?50%, +100% 100 khz ?55%, +100% 15 ms max in lowest power mode khzeco 32 khz crystal dependent 32 khz crystal dependent 500 ms typ, max is crystal dependent
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 19 of 95 figure 6-1. clocking subsystem 6.1.1 internal oscillators 6.1.1.1 internal main oscillator in most designs the imo is the only clock source required, due to its 4% accuracy. the imo operates with no external components and outputs a stable clock. a factory trim for each frequency range is stored in the device. with the factory trim, tolerance varies from 4% at 3 mhz, up to 10% at 24 mhz. the imo, in conjunction with the pl l, allows generation of cpu and system clocks up to the devi ce's maximum frequency (see usb clock domain ). the imo provides clock outputs at 3, 6, 12, and 24 mhz. 6.1.1.2 clock doubler the clock doubler outputs a clock at twice the frequency of the input clock. the doubler works at input frequency of 24 mhz, providing 48 mhz for the usb. it can be configured to use a clock from the imo, mhzeco, or the dsi (external pin). 6.1.1.3 phase-locked loop the pll allows low frequency, high accuracy clocks to be multiplied to higher frequencies. this is a tradeoff between higher clock frequency and accuracy and, higher power consumption and increased startup time. the pll block provides a mechanism for generating clock frequencies based upon a variety of input sources. the pll outputs clock frequencies in the range of 24 to 40 mhz. its input and feedback dividers supply 4032 discrete ratios to create almost any desired system clock frequency. the accuracy of the pll output depends on the accuracy of the pll input source. the most common pll use is to multiply the imo clock at 3 mhz, where it is most accurate, to generate the cpu and system clocks up to the device?s maximum frequency. the pll achieves phase lock within 250 s (verified by bit setting). it can be configured to use a clock from the imo, mhzeco, or dsi (external pin). the pll clock source can be used until lock is complete and signaled with a lock bit. the lock signal can be routed through the dsi to generate an interrupt. disable the pll before entering low power modes. 6.1.1.4 internal low speed oscillator the ilo provides clock frequencies for low power consumption, including the watchdog timer, and sleep timer. the ilo generates up to three different clocks: 1 khz, 33 khz, and 100 khz. the 1 khz clock (clk1k) is typically used for a background ?heartbeat? timer. this clock inherently lends itself to low power supervisory operations such as the watchdog timer and long sleep intervals using the central timewheel (ctw). the central timewheel is a 1 khz, free-running, 13-bit counter clocked by the ilo. the central timewheel is always enabled except in hibernate mode and when the cpu is stopped during debug on chip mode. it can be used to generate periodic interrupts for timing purposes or to wake the system from a low power mode. firmware can reset the central timewheel. 4-25 mhz eco 3-24 mhz imo 32 khz eco 1,33,100 khz ilo s k e w 7 7 digital clock divider 16 bit digital clock divider 16 bit digital clock divider 16 bit digital clock divider 16 bit digital clock divider 16 bit digital clock divider 16 bit digital clock divider 16 bit digital clock divider 16 bit analog clock divider 16 bit bus clock divider 16 bit 48 mhz doubler for usb 24-40 mhz pll system clock mux external io or dsi 0-40 mhz s k e w analog clock divider 16 bit s k e w analog clock divider 16 bit s k e w analog clock divider 16 bit bus clock cpu clock
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 20 of 95 the central timewheel can be pr ogrammed to wake the system periodically and optionally issue an interrupt. this enables flexible, periodic wakeups from low power modes or coarse timing applications. systems that require accurate timing should use the rtc capability instead of the central timewheel. the 100 khz clock (clk100k) works as a low-power system clock to run the cpu. it can also generate time intervals such as fast sleep intervals using the fast timewheel. the fast timewheel is a 100 khz, 5-bit counter clocked by the ilo that can also be used to wake the system. the fast timewheel settings are programmable, and the counter aut omatically resets when the terminal count is reached. this enables flexible, periodic wakeups of the cpu at a higher rate than is allowed using the central timewheel. the fast timewheel can generate an optional interrupt each time the terminal count is reached. the 33 khz clock (clk33k) comes from a divide-by-3 operation on clk100k. this output can be used as a reduced accuracy version of the 32.768 khz eco clock with no need for a crystal. 6.1.2 external oscillators 6.1.2.1 mhz external crystal oscillator the mhzeco provides high frequency, high precision clocking using an external crystal (see figure 6-2 ). it supports a wide variety of crystal types, in the range of 4 to 25 mhz. when used in conjunction with the pll, it can ge nerate cpu and system clocks up to the device's maximum frequency (see internal low speed oscillator ). the gpio pins connecting to the external crystal and capacitors are fixed. if a crystal is not used then xi must be shorted to ground and xo must be left floating. mhzeco accuracy depends on the crystal chosen. figure 6-2. mhzeco block diagram 6.1.2.2 32.768 khz eco the 32.768 khz external crystal oscillator (32khzeco) provides precision timing with minimal power consumption using an external 32.768 khz watch crystal (see figure 6-3 ). the 32khzeco also connects directly to the sleep timer and provides the source for the rtc. the rtc uses a 1-second interrupt to implement the rtc functionality in firmware. the oscillator works in two distinct power modes. this allows you to trade off power consumption with noise immunity from neighboring circuits. the gpio pins connected to the external crystal and capacitors are fixed. figure 6-3. 32khzeco block diagram 6.1.2.3 digital system interconnect the dsi provides routing for clocks taken from external clock oscillators connected to i/o. the oscillators can also be generated within the device in the digi tal system and udbs. while the primary dsi clock input provides access to all clocking resources, up to eight other dsi clocks (internally or externally generated) may be routed directly to the eight digital clock dividers. this is only possible if there are multiple precision clock sources. 6.1.3 clock distribution all seven clock sources are inputs to the central clock distribution system. the distributi on system is designed to create multiple high precision clocks. these clocks are customized for the design?s requirements and el iminate the common problems found with limited resolution prescalers attached to peripherals. the clock distribution system gener ates several types of clock trees. ? the system clock is used to sele ct and supply the fastest clock in the system for general system clock requirements and clock synchronization of the psoc device. ? bus clock 16-bit divider uses the system clock to generate the system?s bus clock used for data transfers and the cpu. the cpu clock is directly de rived from the bus clock. ? eight fully programmable 16-bit clock dividers generate digital system clocks for general use in the digital system, as configured by the design?s requi rements. digital system clocks can generate custom clocks de rived from any of the seven clock sources for any purpose. examples include baud rate generators, accurate pwm periods, and timer clocks, and many others. if more than eight digital clock dividers are required, the universal digital bl ocks (udbs) and fixed function timer/counter/pwms can also generate clocks. xo 4 - 25 mhz crystal osc xclk_ mhz 4 ? 25 mhz crystal capacitors external components xi xo 4 - 25 mhz crystal osc xclk_ mhz 4 ? 25 mhz crystal capacitors external components xi
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 21 of 95 ? four 16-bit clock dividers genera te clocks for the analog system components that require clocking, such as the adc. the analog clock dividers include skew control to ensure that critical analog events do not occur simultaneously with digital switching events. this is done to reduce analog system noise. each clock divider consists of an 8-input multiplexer, a 16-bit clock divider (divide by 2 and hi gher) that generates ~50% duty cycle clocks, system clock resynchro nization logic, and deglitch logic. the outputs from each digita l clock tree can be routed into the digital system interconnect and then brought back into the clock system as an input, allowing clock ch aining of up to 32 bits. 6.1.4 usb clock domain the usb clock domain is unique in that it operates largely asynchronously from the main clock network. the usb logic contains a synchronous bus interface to the chip, while running on an asynchronous clock to process usb data. the usb logic requires a 48 mhz frequency. this frequency is generated from the doubled value of 24 mhz from internal oscillator, dsi signal, or crystal oscillator. 6.2 power system the power system consists of separate analog, digital, and i/o supply pins, labeled v dda , v ddd , and vddiox, respectively. it also includes two internal 1.8 v regulators that provide the digital (v ccd ) and analog (v cca ) supplies for the internal core logic. the output pins of the regulators (v ccd and v cca ) and the v ddio pins must have capacitors connected as shown in figure 6-4 . the two v ccd pins must be shorted t ogether, with as short a trace as possible, and connected to a 1 f 10% x5r capacitor. the power system also contains a sleep regulator and a hibernate regulator. figure 6-4. psoc power system note the two v ccd pins must be connected toge ther with as short a trace as possible. a trace under the device is recommended, as shown in figure 2-4 . vssb vssd vddio1 vddio2 vddio0 vddio3 vccd vddd vssd vccd vddd vssa vcca vdda digital regulators analog regulator analog domain digital domain sleep regulator hibernate regulator i/o supply i/o supply i/o supply i/o supply . vddio2 vddio0 vddio3 vddio1 0.1 f 0.1 f 0.1 f 0.1 f vddd vddd 1 f 1 f vdda 0.1 f 0.1 f 0.1 f
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 22 of 95 6.2.1 power modes psoc 5 devices have four different power modes, as shown in ta b l e 6-2 and ta b l e 6-3 . the power modes allow a design to easily provide required functional ity and processing power while simultaneously minimizing power consumption and maximizing battery life in low power and portable devices. psoc 5 power modes, in order of decreasing power consumption are: ? active ? alternate active ? sleep ? hibernate active is the main processing mode. its functionality is configurable. each power contro llable subsystem is enabled or disabled by using separate power configuration template registers. in alte rnate active mode, fewer subsystems are enabled, reducing power. in sleep mode most resources are disabled regardless of the template settings. sleep mode is optimized to provide timed sleep intervals and real time clock functionality. the lowest power mode is hibernate, which retains register and sram state, but no clocks, and allows wakeup only from i/o pins. figure 6-5 on page 23 illustrates the allowable transitions between power modes. sleep and hibernate modes should not be entered until all v ddio supplies are at valid voltage levels. table 6-2. power modes power modes description entry condition wakeup source active clocks regulator active primary mode of operation, all peripherals available (program - mable) wakeup, reset, manual register entry any interrupt any (program - mable) all regulators available. digital and analog regulators can be disabled if external regulation used. alternate active similar to active mode, and is typically configured to have fewer peripherals active to reduce power. one possible configuration is to use the udbs for processing, with the cpu turned off manual register entry any interrupt any (program - mable) all regulators available. digital and analog regulators can be disabled if external regulation used. sleep all subsystems automatically disabled manual register entry picu, rtc, ctw, lvd ilo/khzeco both digital and analog regulators buzzed. digital and analog regulators can be disabled if external regulation used. hibernate all subsystems automatically disabled lowest power consuming mode with all peripherals and internal regulators disabled, except hibernate regulator is enabled configuration and memory contents retained manual register entry picu only hibernate regulator active. table 6-3. power modes wakeup time and power consumption sleep modes wakeup time current (typ) code execution digital resources analog resources clock sources available wakeup sources reset sources active ? 5 ma [ 7 ] yes all all all ? all alternate active ? ? user defined all all all ? all sleep 20 s typ 3 a no none none ilo/khzeco picu, rtc, ctw, lvd xres, lvd, wdr hibernate <100 s 1 a no none none none picu xres note 7. bus clock off. execute from cpu instruction buffer at 6 mhz. see table 11-2 on page 54
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 23 of 95 figure 6-5. power mode transitions 6.2.1.1 active mode active mode is the primary oper ating mode of the device. when in active mode, the active configuration template bits control which available resources are enabled or disabled. when a resource is disabled, the digital clocks are gated, analog bias currents are disabled, and leakage currents are reduced as appropriate. user firmware can dynamically control subsystem power by setting and clearing bits in the active configuration template. the cpu can disable itself, in which case the cpu is automatically reenabled at the next wakeup event. when a wakeup event occurs, the global mode is always returned to active, and the cpu is automatically enabled, regardless of its template setting s. active mode is the default global power mode upon boot. 6.2.1.2 alternate active mode alternate active mode is very sim ilar to active mode. in alternate active mode, fewer subsystems are enabled, to reduce power consumption. one possible configuration is to turn off the cpu and flash, and run peripherals at full speed. 6.2.1.3 sleep mode sleep mode reduces power consumption when a resume time of 15 s is acceptable. the wake time is used to ensure that the regulator outputs are stable enough to directly enter active mode. 6.2.1.4 hibernate mode in hibernate mode nearly all of the internal functions are disabled. internal voltages are reduced to the minimal level to keep vital systems alive. config uration state is preserved in hibernate mode and sram memory is retained. gpios configured as digital outputs maintain their previous values and external gpio pin interrupt settings are preserved. the device can only return from hibernate mode in response to an external i/o interrupt. the resume time from hibernate mode is less than 100 s. 6.2.1.5 wakeup events wakeup events are configurable and can come from an interrupt or device reset. a wakeup event restores the system to active mode. interrupt sources include internally generated interrupts, power supervisor, central timewheel, and i/o interrupts. the central timewheel provides periodic interrupts to allow the system to wake up, poll periphe rals, or perform real-time functions. reset event sources include the external reset i/o pin (xres) and wdt. 6.2.2 boost converter applications that use a supply voltage of less than 2.7 v, such as solar or single cell battery supplies, may use the on-chip boost converter. the boost converter may also be used in any system that requires a higher operating voltage than the supply provides. for instance, this includes driving 5.0 v lcd glass in a 3.3 v system. the boost converter accept s an input voltage as low as 1.8 v. with one low cost inductor it produces a selectable output voltage sourcing enough current to operate the psoc and other on-board components. the boost converter accepts an input voltage v bat from 1.8 v to 3.6 v, and can start up with v bat as low as 1.8 v. the converter provides a user configurable output voltage of 3.3 to 5.0 v (v boost ). v bat is typically less than v boost ; if v bat is greater than or equal to v boost , then v boost will be the same as v bat . the block can deliver up to 50 ma (i boost ) depending on configuration. four pins are associated with the boost converter: v bat , v ssb , v boost , and ind. the boosted output voltage is sensed at the v boost pin and must be connected directly to the chip?s supply inputs. an inductor is connected between the v bat and ind pins. the designer can optimize the inductor value to increase the boost converter efficiency based on input voltage, output voltage, current and switching frequency. the external schottky diode shown in figure 6-6 is required only in cases when v boost >3.6 v. figure 6-6. application for boost converter the switching frequency can be se t to 100 khz, 400 khz, 2 mhz, or 32 khz to optimize efficiency and component cost. the 100 khz, 400 khz, and 2 mhz switching frequencies are generated using oscillators internal to the boost converter block. when the 32 khz switching frequen cy is selected, the clock is derived from a 32 khz external crystal oscillator. the 32 khz external clock is primarily intended for boost standby mode. at 2 mhz the vboost output is li mited to 2 vbat, and at 400 khz vboost is limited to 4 vbat. active manual hibernate alternate active sleep psoc v boost ind v bat v ssb v ssd v dda v ddd v ssa 22 f 0.1 f 22 f 10 h optional schottky diode. only required when vdd >3.6 v.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 24 of 95 the boost converter can be operated in two different modes: active and standby. active mode is the normal mode of operation where the boost regulator active ly generates a regulated output voltage. in standby mode, most boost functions are disabled, thus reducing power consumpt ion of the boost circuit. the converter can be configured to provide low power, low current regulation in the standby mode. the external 32 khz crystal can be used to generate inductor boost pulses on the rising and falling edge of the clock when the output voltage is less than the programmed value. this is calle d automatic thump mode (atm). the boost typically draws 200 a in active mode and 12 a in standby mode. the boost operating modes must be used in conjunction with chip power modes to minimize the total chip power consumption. ta b l e 6-4 lists the boost power modes available in different chip power modes. if the boost converter is not used in a given application, tie the v bat , v ssb , and v boost pins to ground and leave the ind pin unconnected. 6.3 reset cy8c52 has multiple internal and external reset sources available. the reset sources are: ? power source monitoring: the analog and digital power voltages, v dda , v ddd , v cca , and v ccd are monitored in several different modes during power up, active mode, and sleep mode (buzzing). if any of the voltages goes outside predetermined ranges then a rese t is generated. the monitors are programmable to generate an interrupt to the processor under certain conditions before reaching the reset thresholds. ? external: the device can be reset from an external source by pulling the reset pin (xres) low. the xres pin includes an internal pull up to v ddio1 . v ddd , v dda , and v ddio1 must all have voltage applied before the part comes out of reset. ? watchdog timer: a watchdog time r monitors the execution of instructions by the processor. if the watchdog timer is not reset by firmware within a certain period of time, the watchdog timer generates a reset. the watchdog timer should not be used during sleep and hibernate modes. ? software: the device can be reset under program control. figure 6-7. resets the term system reset indicates that the processor as well as analog and digital peripherals and registers are reset. a reset status register holds the source of the most recent reset or power voltage monitoring interrupt. the program may examine this register to detect and report exception conditions. this register is cleared after a power on reset. 6.3.1 reset sources 6.3.1.1 power voltage level monitors ? ipor - initial power on reset at initial power on, ipor monitors the power voltages v ddd and v dda , both directly at the pins and at the outputs of the corresponding internal regulators. the trip level is not precise. it is set to approximately 1 volt, which is below the lowest specified operating voltage but high enough for the internal circuits to be reset and to hold their reset state. the monitor generates a reset pulse that is at least 100 ns wide. it may be much wider if one or more of the voltages ramps up slowly. to save power the ipor circuit is disabled when the internal digital supply is stable. when the voltage is high enough, the imo starts. ? alvi, dlvi, ahvi - analog/digital low voltage interrupt, analog high voltage interrupt interrupt circuits are available to detect when v dda and v ddd go outside a voltage range. for ahvi, v dda is compared to a fixed trip level. for alvi and dlvi, v dda and v ddd are compared to trip levels that are programmable, as listed in table 6-5 . alvi and dlvi can also be configured to generate a device reset instead of an interrupt. table 6-4. chip and boost power modes compatibility chip power modes boost power modes chip-active mode boost can be operated in either active or standby mode. chip-sleep mode boost can be operated in either active or standby mode. however, it is recom - mended to operate boost in standby mode for low power consumption chip-hibernate mode boost can only be operated in active mode. however, it is recommended not to use boost in chip hibernate mode due to high current consumption in boost active mode reset controller watchdog timer external reset power voltage level monitors software reset register vddd vdda reset pin system reset processor interrupt
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 25 of 95 the monitors are disabled until after ipor. during sleep mode these circuits are periodically acti vated (buzzed). if an interrupt occurs during buzzing then the system first enters its wakeup sequence. the interrupt is then recognized and may be serviced. 6.3.1.2 other reset sources ? xres - external reset cy8c52 has a dedicated xres pin which holds the part in reset while held active (low). the response to an xres is the same as to an ipor reset. the external reset is active low. it includes an internal pull up resistor. xres is active during sleep and hibernate modes. ? sres - software reset a reset can be commanded under program control by setting a bit in the software reset regist er. this is done either directly by the program or indirectly by dma access. the response to a sres is the same as after an ipor reset. another register bit exists to disable this function. ? wres - watchdog timer reset the watchdog reset detects when the software program is no longer being executed correctly. to indicate to the watchdog timer that it is running correctly , the program must periodically reset the timer. if the timer is not reset before a user-specified amount of time, then a reset is generated. note ipor disables the watchdog function. the program must enable the watchdog function at an appropriate point in the code by setting a register bit. when this bit is set, it cannot be cleared again except by an ipor power on reset event. the watchdog timer should not be used if the device is to be put into sleep or hibernate mode. 6.4 i/o system and routing psoc i/os are extremely flexible. every gpio has analog and digital i/o capability. all i/os have a large number of drive modes, which are set at por. psoc also provides up to four individual i/o voltage domains through the v ddio pins. there are two types of i/o pins on every device; those with usb provide a third type. both g eneral purpose i/o (gpio) and special i/o (sio) provide similar digital functionality. the primary differences are their analog capability and drive strength. devices that include usb also provide two usbio pins that support specific usb functionality as well as limited gpio capability. all i/o pins are available for use as digital inputs and outputs for both the cpu and digital peripherals. in addition, all i/o pins can generate an interrupt. the flexible and advanced capabilities of the psoc i/o, combined with any signal to any pin routability, greatly simplify circuit design and board layout. all gpio pins can be used for analog input, capsense [ 8 ] , and lcd segment drive, while sio pins are used for voltages in excess of v dda and for programmable output voltages. ? features supported by both gpio and sio: ? separate i/o supplies and voltages for up to four groups of i/o ? digital peripherals use dsi to connect the pins ? input or output or both for cpu and dma ? eight drive modes ? every pin can be an interrupt source configured as rising edge, falling edge or both edges. if required, level sensitive interrupts are supported through the dsi ? dedicated port interrupt vector for each port ? slew rate controlled digital output drive mode ? access port control and configurat ion registers on either port basis or pin basis ? separate port read (ps) and writ e (dr) data registers to avoid read modify write errors ? special functionality on a pin by pin basis ? additional features only provided on the gpio pins: ? lcd segment drive on lcd equipped devices ? capsense on capsense equipped devices [ 8 ] ? analog input and output capability ? continuous 100 a clamp current capability ? standard drive strength down to 2.7 v ? additional features only provided on sio pins: ? higher drive strength than gpio ? hot swap capability (5 v tolerance at any operating v dd ) ? programmable and regulated high input and output drive levels down to 1.2 v ? no analog input or lcd capability ? over voltage tolerance up to 5.5 v ? sio can act as a general purpose analog comparator ? usbio features: ? full speed usb 2.0 compliant i/o ? highest drive strength for general purpose use ? input, output, or both for cpu and dma ? input, output, or both for digital peripherals ? digital output (cmos) drive mode ? each pin can be an interrupt source configured as rising edge, falling edge, or both edges table 6-5. analog/digital low voltage interrupt, analog high voltage interrupt interrupt supply normal voltage range available trip settings accuracy dlvi v ddd 2.7 v-5.5 v 2.71 v-5.45 v in 250 mv increments 2% alvi v dda 2.7 v-5.5 v 2.71 v-5.45 v in 250 mv increments 2% ahvi v dda 2.7 v-5.5 v 5.75 v 2% note 8. gpios with opamp outputs are not recommended for use with capsense.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 26 of 95 figure 6-8. gpio block diagram drive logic prt[x]dm0 prt[x]dr pin digital output path digital input path prt[x]slw lcd logic & mux prt[x]dm1 prt[x]dm2 prt[x]lcd_en prt[x]lcd_com_seg analog analog mux enable analog global enable digital system output 0 1 prt[x]byp prt[x]bie bidirectional control capsense global control switches pin interrupt signal digital system input prt[x]ps prt[x]ctl input buffer disable display data interrupt logic picu[x]inttype[y] picu[x]intstat vddio vddio vddio slew cntl lcd bias bus 5 prt[x]amux prt[x]ag 1 caps[x]cfg1 oe in prt[x]sync_out prt[x]dbl_sync_in picu[x]intstat naming convention ?x? = port number ?y? = pin number 0 1 0 1
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 27 of 95 figure 6-9. sio input/output block diagram figure 6-10. usbio block diagram drive logic prt[x]dm0 prt[x]dr pin digital output path digital input path prt[x]slw prt[x]dm1 prt[x]dm2 digital system output 0 1 prt[x]byp prt[x]bie bidirectional control pin interrupt signal digital system input prt[x]ps input buffer disable interrupt logic picu[x]inttype[y] picu[x]intstat slew cntl oe in prt[x]sync_out prt[x]dbl_sync_in picu[x]intstat prt[x]sio_diff buffer thresholds driver vhigh prt[x]sio_cfg prt[x]sio_hyst_en naming convention ?x? = port number ?y? = pin number reference level reference level drive logic usbio_cr1[4,5] pin digital output path digital input path digital system output 0 1 prt[x]byp pin interrupt signal digital system input usbio_cr1[0,1] interrupt logic picu[x]inttype[y] picu[x]intstat in prt[x]dbl_sync_in picu[x]intstat naming convention ?x? = port number ?y? = pin number vddd vddd vddd 5 k 1.5 k d+ pin only usbio_cr1[2] usbio_cr1[3] usbio_cr1[6] usbio_cr1[7] usb or i/o d+ 1.5 k d+d- 5 k open drain prt[x]sync_out usb sie control for usb mode usb receiver circuitry vddd
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 28 of 95 6.4.1 drive modes each gpio and sio pin is individually configurable into one of the eight drive modes listed in ta b l e 6-6 . three configuration bits are used for each pin (dm[2:0]) and set in the prtxdm[2:0] registers. figure 6-11 depicts a simplified pin view based on each of the eight drive modes. ta b l e 6-6 shows the i/o pin?s drive state based on the port data register value or digital array signal if bypass mode is selected. note that the actual i/o pin voltage is determined by a combination of the selected drive mode and the load at the pin. for example, if a gpio pin is configured for resistive pull up mode and driven high while the pin is floating, the voltage measured at the pin is a high logic state. if the same gpio pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state. figure 6-11. drive mode ? high impedance analog the default reset state with both the output driver and digital input buffer turned off. this prevents any current from flowing in the i/o?s digital input buffer due to a floating voltage. this state is recommended for pins that are floating or that support an analog voltage. high impedance analog pins do not provide digital input functionality. to achieve the lowest chip current in sleep modes, all i/os must either be configured to the high impedance analog mode, or have their pins driven to a power supply rail by the psoc device or by external circuitry. ? high impedance digital the input buffer is enabled for digital signal input. this is the standard high impedance (hiz) state recommended for digital inputs. table 6-6. drive modes diagram drive mode prtxdm2 prtxdm1 prtxdm0 prtxdr = 1 prtxdr = 0 0 high impedence analog 0 0 0 high-z high-z 1 high impedance digital 0 0 1 high-z high-z 2 resistive pull-up [ 9 ] 0 1 0 res high (5k) strong low 3 resistive pull-down [ 9 ] 0 1 1 strong high res low (5k) 4 open drain, drives low 1 0 0 high-z strong low 5 open drain, drive high 1 0 1 strong high high-z 6 strong drive 1 1 0 strong high strong low 7 resistive pull-up and pull-down [ 9 ] 1 1 1 res high (5k) res low (5k) high impedance analog ps dr ps dr ps dr 0. high impedance digital 1. resistive pull-up 2. resistive pull-down 3. open drain , drives low 4. open drain , drives high 5. strong drive 6. resistive pull-up and pull-down 7. vddio pin pin pin vddio pin pin pin pin pin ps dr ps dr ps dr ps dr ps dr vddio vddio vddio note 9. resistive pull up and pull down are not avai lable with sio in regulated output mode.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 29 of 95 ? resistive pull up or resistive pull down resistive pull up or pull down, respectively, provides a series resistance in one of the data states and strong drive in the other. pins can be used for digital input and output in these modes. interfacing to mechanical switches is a common application for these modes. resistive pull up and pull down are not available with sio in regulated output mode. ? open drain, drives high a nd open drain, drives low open drain modes provide hi gh impedance in one of the data states and strong drive in the ot her. pins can be used for digital input and output in these modes. a common application for these modes is driving the i 2 c bus signal lines. ? strong drive provides a strong cmos output dr ive in either high or low state. this is the standard out put mode for pins. strong drive mode pins must not be used as inputs under normal circumstances. this mode is often used to drive digital output signals or external fets. ? resistive pull up and pull down similar to the resistive pull up and resistive pull down modes except the pin is always in seri es with a resistor. the high data state is pull up while the low data state is pull down. this mode is most often used when other signals that may cause shorts can drive the bus. resistive pull up and pull down are not available with sio in regulated output mode. 6.4.2 pin registers registers to configure and interact with pins come in two forms that may be used interchangeably. all i/o registers are available in the standard port form, where each bit of the register corresponds to one of the port pins. this register form is efficient for quickly reconfiguring multiple port pins at the same time. i/o registers are also available in pin form, which combines the eight most commonly used port register bits into a single register for each pin. this enables very fast configuration changes to individual pins with a single register write. 6.4.3 bidirectional mode high speed bidirectional capability allows pins to provide both the high impedance digital drive mode for input signals and a second user selected drive mode su ch as strong drive (set using prtxdm[2:0] registers) for out put signals on the same pin, based on the state of an auxiliary control bus signal. the bidirectional capability is useful for processor busses and communications interfaces such as the spi slave miso pin that requires dynamic hardware control of the output buffer. the auxiliary control bus routes up to 16 udb or digital peripheral generated output enable signals to one or more pins. 6.4.4 slew rate limited mode gpio and sio pins have fast and slow output slew rate options for strong and open drain drive modes, not resistive drive modes. because it results in reduced emi, the slow edge rate option is recommended for signals that are not speed critical, generally less than 1 mhz. the fast slew rate is for signals between 1 mhz and 33 mhz. the slew rate is individually configurable for each pin, and is set by the prtxslw registers. 6.4.5 pin interrupts all gpio and sio pins are able to generate interrupts to the system. all eight pins in each por t interface to their own port interrupt control unit (picu) an d associated interrupt vector. each pin of the port is independently configurable to detect rising edge, falling edge, both edge interrupts, or to not generate an interrupt. depending on the configured mode for each pin, each time an interrupt event occurs on a pin, its corresponding status bit of the interrupt status register is set to ?1? and an interrupt request is sent to the interrupt controller. each picu has its own interrupt vector in the interrupt controll er and the pin st atus register providing easy determination of t he interrupt source down to the pin level. port pin interrupts remain active in all sleep modes allowing the psoc device to wake from an externally generated interrupt. while level sensitive interrupts ar e not directly supported; udbs provide this functionality to the system when needed. 6.4.6 input buffer mode gpio and sio input buffers can be configured at the port level for the default cmos input thre sholds or the optional lvttl input thresholds. all input buffers incorporate schmitt triggers for input hysteresis. additionally, individual pin input buffers can be disabled in any drive mode. 6.4.7 i/o power supplies up to four i/o pin power supplies are provided depending on the device and package. each i/o supply must be less than or equal to the voltage on the chip?s analog (v dda ) pin. this feature allows you to provide different i/o voltage levels for different pins on the device. refer to the specific device package pinout to determine v ddio capability for a given port and pin. the sio port pins support an additional regulated high output capability, as described in adjustable output level . 6.4.8 analog connections these connections apply only to gpio pins. all gpio pins may be used as analog inputs or outputs. the analog voltage present on the pin must not exceed the v ddio supply voltage to which the gpio belongs. each gpio may connect to one of the analog global busses or to one of the analog mux buses to connect any pin to any internal analog resource such as adc or comparators. in addition, one select pin provides direct connection to the high current dac. 6.4.9 capsense this section applies only to gp io pins. all gpio pins may be used to create capsense buttons and sliders [ 10 ] . see the ?capsense? section on page 48 for more information. 6.4.10 lcd segment drive this section applies only to gp io pins. all gpio pins may be used to generate segment and common drive signals for direct glass drive of lcd glass. see the ?lcd direct drive? section on page 47 for details. note 10. gpios with opamp outputs are not recommended for use with capsense.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 30 of 95 6.4.11 adjustable output level this section applies only to sio pins. sio port pins support the ability to provide a regulated high output level for interface to external signals that are lower in voltage than the sio?s respective v ddio . sio pins are individually configurable to output either the standard v ddio level or the regulated output, which is based on an internally generated reference. typically the voltage dac (vdac) is used to generate the reference (see figure 6-12 ). the dac on page 48 has more details on vdac use and reference routing to the sio pins. resistive pull up and pull down drive modes are not available with sio in regulated output mode. 6.4.12 adjustable input level this section applies only to sio pins. sio pins by default support the standard cmos and lvttl input levels but also support a differential mode with programmable levels. sio pins are grouped into pairs. each pair shares a reference generator block which, is used to set the digital input buffer reference level for interface to external signals that differ in voltage from v ddio . the reference sets the pins voltage threshold for a high logic level (see figure 6-12 ). available input thresholds are: ? 0.5 v ddio ? 0.4 v ddio ? 0.5 v ref ? v ref typically the voltage dac (vdac) generates the v ref reference. the dac on page 48 has more details on vdac use and reference routing to the sio pins. figure 6-12. sio reference for input and output 6.4.13 sio as comparator this section applies only to sio pins. the adjustable input level feature of the sios as explained in the adjustable input level section can be used to construct a comparator. the threshold for the comparator is provided by the sio's reference generator. the reference generator has the option to set the analog signal routed through the analog global line as threshold for the comparator. note that a pair of sio pins share the same threshold. the digital input path in figure 6-9 on page 27 illustrates this functionality. in the figure, ?reference level? is the analog signal routed through the analog global . the hysteresis feature can also be enabled for the input buffer of the sio, which increases noise immunity for the comparator. 6.4.14 hot swap this section applies only to sio pins. sio pins support ?hot swap? capability to plug into an application without loading the signals that are connected to the sio pins even when no power is applied to the psoc device. this allows the unpowered psoc to maintain a high impedance load to the external device while also preventing the psoc from being powered through a gpio pin?s protection diode. 6.4.15 over voltage tolerance all i/o pins provide an over voltage (v ddio < v in < v dda ) tolerance feature at any operating v dd . ? there are no current limitations fo r the sio pins as they present a high impedance load to the external circuit. ? the gpio pins must be limited to 100 a using a current limiting resistor. gpio pins clamp the pi n voltage to approximately one diode above the v ddio supply. ? in case of a gpio pin configured for analog input/output, the analog voltage on the pin must not exceed the v ddio supply voltage to which the gpio belongs. a common application for this feat ure is connection to a bus such as i 2 c where different devices are running from different supply voltages. in the i 2 c case, the psoc chip is configured into the open drain, drives low mode for the sio pin. this allows an external pull up to pull the i 2 c bus voltage above the psoc pin supply. for example, the psoc chip could operate at 2.7 v, and an external device could run from 5 v. note that the sio pin?s v ih and v il levels are determined by the associated v ddio supply pin. the i/o pin must be configured into a high impedance drive mode, open drain low drive mode, or pull down drive mode, for over voltage tolerance to work properly. absolute maximum ratings for the device must be observed for all i/o pins. 6.4.16 reset configuration at reset, all i/os are reset to the high impedance analog state. 6.4.17 low power functionality in all low power modes the i/o pins retain their state until the part is awakened and changed or reset. to awaken the part, use a pin interrupt, because the port interrupt logic continues to function in all low power modes. pin drive logic driver vhigh reference generator sio_ref digital input digital output input path output path vinref voutref
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 31 of 95 6.4.18 special pin functionality some pins on the device include additional special functionality in addition to their gpio or sio functionality. the specific special function pins are listed in ?pinouts? on page 5 . the special features are: ? digital ? 4 to 25 mhz crystal oscillator ? 32.768 khz crystal oscillator ? swd and swv interface pins ? external reset ? analog ? high current idac output ? external reference inputs 7. digital subsystem the digital programmable system creates applicat ion specific combinations of both standard and advanced digital peripherals and custom logic functions. these peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and ip security. the features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. designers do not need to interact directly with the programmable digital system at the hardware an d register leve l. psoc creator provides a high level schematic capture graphical interface to automatically place and route resources similar to plds. the main components of the digital programmable system are: ? universal digital blocks (udb) - these form the core functionality of the digital pr ogrammable system. udbs are a collection of uncommitted logic (pld) and structural logic (datapath) optimized to create all common embedded peripherals and customized functio nality that are application or design specific. ? universal digital block array - udb blocks are arrayed within a matrix of programmable interconnect. the udb array structure is homogeneous and allows for flexible mapping of digital functions onto the array. the array supports extensive and flexible routing interconnects between udbs and the digital system interconnect. ? digital system interconnect (dsi) - digital signals from udbs, fixed function peripherals, i/o pi ns, interrupts, dma, and other system core signals are attached to the dsi to implement full featured device connectivity. the dsi allows any digital function to any pin or other feature rout ability when used with the udb array. figure 7-1. cy8c52 digital programmable architecture 7.1 example peripherals the flexibility of the cy8c52 family?s udbs and analog blocks allow you to create a wide range of components (peripherals). the most common peripherals were built and characterized by cypress and are shown in the pso c creator component catalog. however, you may also create your own custom components using psoc creator. using psoc creator, you may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces. the number of components available through psoc creator is too numerous to list in the data sheet, and the list is always growing. an example of a component available for use in cy8c52 family, but, not explicitly called out in this data sheet is the uart component. 7.1.1 example digital components the following is a sample of the digital components available in psoc creator for the cy8c52 family. the exact amount of hardware resources (udbs, rout ing, ram, flash) used by a component varies with the features selected in psoc creator for the component. ? communications ? i 2 c (1 to 3 udbs) ? uart (1 to 3 udbs) ? functions ? pwm (1 to 2 udbs) ? logic (x cpld product terms per logic function) ? not ? or ? xor ? and io port digital core system and fixed function peripherals udb array udb array io port io port io port dsi routing interface dsi routing interface digital core system and fixed function peripherals udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb udb
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 32 of 95 7.1.2 example analog components the following is a sample of the analog components available in psoc creator for the cy8c52 family. the exact amount of hardware resources (sc/ct blo cks, routing, ram, flash) used by a component varies with t he features selected in psoc creator for the component. ? adc ? successive approximation (sar adc) ? dacs ? current ? voltage ? pwm ? comparators 7.1.3 example system function components the following is a sample of the system function components available in psoc creator for the cy8c52 family. the exact amount of hardware resources ( udbs, routing, ram, flash) used by a component varies with t he features selected in psoc creator for the component. ? capsense ? lcd drive ? lcd control ? filters 7.1.4 designing with psoc creator 7.1.4.1 more than a typical ide a successful design tool allows for the rapid development and deployment of both simple and complex designs. it reduces or eliminates any learning curve. it makes the integration of a new design into the production stream straightforward. psoc creator is that design tool. psoc creator is a full featured integrated development environment (ide) for hardware and software design. it is optimized specifically for psoc devices and combines a modern, powerful software development platform with a sophisticated graphical design tool. this unique combination of tools makes psoc creator the most flexible embedded design platform available. graphical design entry simplifies the task of configuring a particular part. you can select th e required functionality from an extensive catalog of components an d place it in your design. all components are parameterized and have an editor dialog that allows you to tailor functionality to your needs. psoc creator automatical ly configures cloc ks and routes the i/o to the selected pins and then generates apis to give the application complete control over the hardware. changing the psoc device configuration is as simple as adding a new component, setting its parameters, and rebuilding the project. at any stage of development you are free to change the hardware configuration and even the target processor. to retarget your application (hardware and software) to new devices, even from 8- to 32-bit families, just select the new device and rebuild. you also have the ability to chan ge the c compiler and evaluate an alternative. components are designed for portability and are validated against all devices, from all families, and against all supported tool chains. switching compilers is as easy as editing the from the project options and rebuilding the application with no errors from the generated apis or boot code.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 33 of 95 figure 7-2. psoc creator framework
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 34 of 95 7.1.4.2 component catalog figure 7-3. component catalog the component catalog is a repository of reusable design elements that select device functionality and customize your psoc device. it is populated with an impressive selection of content; from simple primitives such as logic gates and device registers, through the digital timers, counters and pwms, plus analog components such as adc and dac, and communication protocols such as i 2 c, usb and can. see ?example peripherals? section on page 31 for more details about available peripherals. all content is fu lly characterized and carefully documented in data sheets with code examples, ac/dc specifications, and user code ready apis. 7.1.4.3 design reuse the symbol editor gives you the ability to develop reusable components that can significantly reduce future design time. just draw a symbol and associate that symbol with your proven design. psoc creator allows fo r the placement of the new symbol anywhere in the component catalog along with the content provided by cypress. you can then reuse your content as many times as you want, and in any number of projects, without ever having to revisit the details of the implementation. 7.1.4.4 software development figure 7-4. code editor anchoring the tool is a modern, highly customizable user interface. it includes project m anagement and integrated editors for c and assembler source code, as well the design entry tools. project build control leverages compiler technology from top commercial vendors such as arm ? limited, keil?, and codesourcery (gnu). free versions of keil c51 and gnu c compiler (gcc) for arm, with no rest rictions on code size or end product distribution, are includ ed with the tool distribution. upgrading to more optimizing compilers is a snap with support for the professional keil c51 product and arm realview? compiler. 7.1.4.5 nonintrusive debugging figure 7-5. psoc creator debugger with swd debug connectivity available on all devices, the psoc creator debugger offers full contro l over the target device with minimum intrusion. breakpoints and code execution commands are all readily available from toolbar buttons and an impressive lineup of windows?register, locals, watch, call stack, memory and peripherals ? make for an unparalleled level of visibility into the system.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 35 of 95 psoc creator contains all the tools necessary to complete a design, and then to maintain and extend that design for years to come. all steps of the design flow are carefully integrated and optimized for ease-of-use and to maximize productivity. 7.2 universal digital block the universal digital block (udb ) represents an evolutionary step to the next generation of psoc embedded digital peripheral functionality. the architecture in first generation psoc digital blocks provides coarse progra mmability in which a few fixed functions with a small number of options are available. the new udb architecture is the optima l balance between configuration granularity and efficient implementation. a cornerstone of this approach is to provide the ability to customize the devices digital operation to match application requirements. to achieve this, udbs consist of a combination of uncommitted logic (pld), structured logic (dat apath), and a flexible routing scheme to provide interconnect between these elements, i/o connections, and other peripherals. udb functionality ranges from simple self contained functions that are implemented in one udb, or even a portion of a udb (unused resources are available for other functions), to more complex functions that require multiple udbs. examples of basic functions are timers, counters, crc generators, pwms, dead band generators, and communications functions, such as uarts, spi, and i 2 c. also, the pld blocks and conn ectivity provide fu ll featured general purpose programmable logic within the limits of the available resources. figure 7-6. udb block diagram the main component blocks of the udb are: ? pld blocks: there are two small plds per udb. these blocks take inputs from the routing array and form registered or combinational sum-of-products logic. plds are used to implement state machines, state bits, and combinational logic equations. pld configuration is automatically generated from graphical primitives. ? datapath module: this 8-bit wide datapath contains structured logic to implement a dynamically configurable alu, a variety of compare configurations and co ndition generation. this block also contains input/output fifos, which are the primary parallel data interface between the cpu/dma system and the udb. ? status and control module: the primary role of this block is to provide a way for cpu firmware to interact and synchronize with udb operation. ? clock and reset module: this bl ock provides the udb clocks and reset selection and control. 7.2.1 pld module the primary purpose of the pld blocks is to implement logic expressions, state machines, sequencers, look up tables, and decoders. in the simple st use model, consider the pld blocks as a standalone resource onto which general purpose rtl is synthesized and mapped. the more common and efficient use model is to create digital func tions from a combination of pld and datapath blocks, where the pld implements only the random logic and state portion of the function while the datapath (alu) implements the more structured elements. figure 7-7. pld 12c4 structure one 12c4 pld block is shown in figure 7-7 . this pld has 12 inputs, which feed across eight product terms. each product term (and function) can be from 1 to 12 inputs wide, and in a given product term, the true (t) or complement (c) of each input can be selected. the product terms are summed (or function) to create the pld outputs. a sum can be from 1 to 8 product terms wide. the 'c' in 12c4 indicates that the width of the or gate (in this case 8) is constant across all outputs (rather than variable as in a 22v10 device). this pla like structure gives maximum flexibility and insures that all inputs and outputs are permutable for ease of allocation by the software tools. there are two 12c4 plds in each udb. 7.2.2 datapath module the datapath contains an 8-bit si ngle cycle alu, with associated compare and condition generation logic. this datapath block is optimized to implement embedded functions, such as timers, counters, integrators, pwms, prs, crc, shifters and dead band generators and many others. pld 12c4 (8 pts) pld 12c4 (8 pts) datapath clock and reset control routing channel datapath chaining pld chaining status and control pt0 in0 in1 in2 in3 in4 in5 in6 in7 in8 in9 in10 in11 tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc tc pt1 pt2 pt3 pt4 pt5 pt6 pt7 tttttttt tttttttt tttttttt tttttttt and array or array mc0 mc1 mc2 out0 out1 out2 out3 mc3 selin (carry in) selout (carry out)
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 36 of 95 figure 7-8. datapath top level 7.2.2.6 working registers the datapath contains six primary working registers, which are accessed by cpu firmware or dma during normal operation. 7.2.2.7 dynamic datapath configuration ram dynamic configuration is the ability to change the datapath function and internal configuration on a cycle-by-cycle basis, under sequencer control. this is implemented using the 8-word 16-bit configuration ram, wh ich stores eight unique 16-bit wide configurations. the address input to this ram controls the sequence, and can be routed from any block connected to the udb routing matrix, most typicall y pld logic, i/o pins, or from the outputs of this or other datapath blocks. alu the alu performs eight general purpose functions. they are: ? increment ? decrement ? add ? subtract ? logical and ? logical or ? logical xor ? pass, used to pass a value through the alu to the shift register, mask, or another udb register independent of the alu operation, these functions are available: ? shift left ? shift right ? nibble swap ? bitwise or mask a0 a1 d0 d1 pi alu mask shift data registers output muxes f1 f0 fifos accumulators po a0 a1 d0 d1 output to programmable routing chaining control store ram 8 word x 16 bit parallel input/output (to/from programmable routing) input from programmable routing input muxes to/from next datapath to/from previous datapath datapath control phub system bus r/w access to all registers conditions: 2 compares, 2 zero detect, 2 ones detect overflow detect 6 6 table 7-1. working datapath registers name function description a0 and a1 accumulators these are sources and sinks for the alu and also sources for the compares. d0 and d1 data registers these are sources for the alu and sources for the compares. f0 and f1 fifos these are the primary interface to the system bus. they can be a data source for the data registers and accumulators or they can capture data from the accumu - lators or alu. ea ch fifo is four bytes deep.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 37 of 95 7.2.2.8 conditionals each datapath has two compar es, with bit masking options. compare operands include the two accumulators and the two data registers in a variety of configurations. other conditions include zero detect, all ones detect, and overflow. these conditions are the primary datapat h outputs, a selection of which can be driven out to the udb routing matrix. conditional computation can use the built in chaining to neighboring udbs to operate on wider data widths without the need to use routing resources. 7.2.2.9 variable msb the most significant bit of an arithmetic and shift function can be programmatically specified. this supports variable width crc and prs functions, and in conjunction with alu output masking, can implement arbitrary width timers, counters and shift blocks. 7.2.2.10 built in crc/prs the datapath has built in support for single cycle cyclic redundancy check (crc) computation and pseudo random sequence (prs) generation of arbitrary width and arbitrary polynomial. crc/prs functions longer than 8 bits may be implemented in conjunction with pld logic, or built in chaining may be use to extend the func tion into neighboring udbs. 7.2.2.11 input/output fifos each datapath contains two four-byte deep fifos, which can be independently configured as an i nput buffer (system bus writes to the fifo, datapath internal reads the fifo), or an output buffer (datapath internal writes to the fifo, the system bus reads from the fifo). the fifos generat e status that are selectable as datapath outputs and can theref ore be driven to the routing, to interact with sequencer s, interrupts, or dma. figure 7-9. example fifo configurations 7.2.2.12 chaining the datapath can be configured to chain conditions and signals such as carries and shift data with neighboring datapaths to create higher precision arithm etic, shift, crc/prs functions. 7.2.2.13 time multiplexing in applications that are over sampled, or do not need high clock rates, the single alu block in the datapath can be efficiently shared with two sets of register s and condition generators. carry and shift out data from the alu are registered and can be selected as inputs in subsequent cycles. this provides support for 16-bit functions in one (8-bit) datapath. 7.2.2.14 datapath i/o there are six inputs and six outputs that connect the datapath to the routing matrix. inputs fr om the routing provide the configuration for the datapath oper ation to perform in each cycle, and the serial data inputs. inputs can be routed from other udb blocks, other device peripherals, device i/o pins, and so on. the outputs to the routing can be selected from the generated conditions, and the serial data outputs. outputs can be routed to other udb blocks, device per ipherals, interrupt and dma controller, i/o pins, and so on. 7.2.3 status and control module the primary purpose of this circuitry is to coordinate cpu firmware interaction with internal udb operation. figure 7-10. status and control registers the bits of the control register, which may be written to by the system bus, are used to drive into the routing matrix, and thus provide firmware with the opportunity to control the state of udb processing. the status register is read-only and it allows internal udb state to be read out onto th e system bus directly from internal routing. this allows firm ware to monitor the state of udb processing. each bit of these registers has programmable connections to the routing matr ix and routing connections are made depending on the requirem ents of the application. 7.2.3.15 usage examples as an example of control input, a bit in the control register can be allocated as a function enable bit. there are multiple ways to enable a function. in one method the control bit output would be routed to the clock control block in one or more udbs and serve as a clock enable for the selected udb blocks. a status example is a case where a pld or datapath block generated a condition, such as a ?compare true? condi tion that is captured and latched by the status register and then read (and cleared) by cpu firmware. 7.2.3.16 clock generation each subcomponent block of a udb including the two plds, the datapath, and status and control, has a clock selection and control block. this promotes a fine granularity with respect to allocating clocking resources to udb component blocks and allows unused udb resources to be used by other functions for maximum system efficiency. system bus f0 f1 system bus a0/a1/alu d0/d1 a0/a1/alu system bus f1 a0/a1/alu f0 d0 system bus f1 a0 d1 a1 f0 tx/rx dual capture dual buffer routing channel 8-bit status register (read only) 8-bit control register (write/read) system bus
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 38 of 95 7.3 udb array description figure 7-11 shows an example of a 16 udb array. in addition to the array core, there are a dsi ro uting interfaces at the top and bottom of the array. other interfac es that are not explicitly shown include the system inte rfaces for bus and cl ock distribu tion. the udb array includes multiple horizontal and vertical routing channels each comprised of 96 wires. the wire connections to udbs, at horizontal/vertical inte rsection and at the dsi interface are highly permutable providing ef ficient automatic routing in psoc creator. additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability. figure 7-11. digital system interface structure 7.3.1 udb array programmable resources figure 7-12 shows an example of how functions are mapped into a bank of 16 udbs. the primary programmable resources of the udb are two plds, one datapath and one status/control register. these resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to ot her unrelated functions. an example of this is the 8-bit time r in the upper left corner of the array. this function only requires one datapath in the udb, and therefore the pld resources may be allocated to another function. a function such as a quadrature decoder may require more pld logic than one udb can supply and in this case can utilize the unused pld blocks in the 8-bit timer udb. programmable resources in the udb array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array. figure 7-12. function mappin g example in a bank of udbs 7.4 dsi routing interface description the dsi routing interface is a c ontinuation of the horizontal and vertical routing channels at t he top and bottom of the udb array core. it provides general purpose programmable routing between device peripherals, including udbs, i/os, analog peripherals, interrupts, dma and fixed function peripherals. figure 7-13 illustrates the concept of the digital system interconnect, which connects t he udb array routing matrix with other device peripherals. any digital core or fixed function peripheral that needs programmable routing is connected to this interface. signals in this category include: ? interrupt requests from all digital peripherals in the system. ? dma requests from all digital peripherals in the system. ? digital peripheral data signals that need flexible routing to i/os. ? digital peripheral data signals that need connections to udbs. ? connections to the interrupt and dma controllers. ? connection to i/o pins. ? connection to analog system digital signals. udb udb hv b udb udb hv a udb udb hv b hv a udb udb hv a udb udb hv b udb udb hv a hv b hv b hv a hv b hv a hv a hv b hv a hv b udb udb udb udb system connections system connections udb udb hv b udb udb hv a udb udb hv b hv a udb hv a udb hv b udb hv a hv b udb udb udb udb udb udb uart logic 12-bit pwm i2c slave 8-bit spi 12-bit spi logic 8-bit timer 16-bit pyrs udb 8-bit timer quadrature decoder 16-bit pwm sequencer
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 39 of 95 figure 7-13. digital system interconnect interrupt and dma routing is very flexible in the cy8c52 programmable architecture. in addition to the numerous fixed function peripherals that can gen erate interrupt requests, any data signal in the udb array routing can also be used to generate a request. a single peripheral may generate multiple independent interrupt requests simplifying system and firmware design. figure 7-14 shows the structure of the idmux (interrupt/dma multiplexer). figure 7-14. interrupt and dma processing in the idmux 7.4.1 i/o port routing there are a total of 20 dsi routes to a typical 8-bit i/o port, 16 for data and four for drive strength control. when an i/o pin is connected to the routing, there are two primary connections available, an input and an output. in conjunction with drive strength c ontrol, this can implement a bidirectional i/o pin. a data output signal has the option to be single synchronized (pipelined) and a data input signal has the option to be double synchronized. the synchronization clock is the system clock (see figure 6-1 ). normally all inputs from pins are synchronized as this is requi red if the cpu interacts with the signal or any signal derived from it. asynchronous inputs have rare uses. an example of this is a feed through of combinational pld logic from input pins to output pins. figure 7-15. i/o pin synchronization routing figure 7-16. i/o pin output connectivity there are four more dsi connections to a given i/o port to implement dynamic output enab le control of pins. this connectivity gives a range of options, from fully ganged 8-bits controlled by one signal, to up to four individually controlled pins. the output enable signal is useful for creating tristate bidirectional pins and buses. figure 7-17. i/o pin output enable connectivity udb array digital system routing i/f digital system routing i/f can interrupt controller i2c io port pins dma controller io port pins del-sig comparators dacs sc/ct blocks global clocks global clocks timer counters dma termout (irqs) dma controller interrupt controller fixed function irqs edge detect edge detect irqs udb array fixed function drqs drqs interrupt and dma processing in idmux 0 1 2 3 0 1 2 do di port i pin 0 do pin1 do pin2 do pin3 do pin4 do pin5 do pin6 do pin7 do 8 io data output connections from the udb array digital system interface port i pin 0 oe pin1 oe pin2 oe pin3 oe pin4 oe pin5 oe pin6 oe pin7 oe 4 io control signal connections from udb array digital system interface
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 40 of 95 7.5 can the can peripheral is a fully func tional controller area network (can) supporting communication baud rates up to 1 mbps. the can controller implements the can2.0a and can2.0b specifications as defined in the bosch specification and conforms to the iso-11898-1 standard. the can protocol was originally designed for automotive applications with a focus on a high level of fault detection. this ensures high communication reliability at a low cost. becaus e of its success in automotive applications, can is used as a standard communication protocol for motion oriented machine control networks (canopen) and factory automation applications (devicenet). the can controller features allow the efficient implementation of higher level protocols without affecting the performance of the microcontroller cpu. full config uration support is provided in psoc creator. figure 7-18. can bus system implementation 7.5.1 can features ? can2.0a/b protocol implementation - iso 11898 compliant ? standard and extended frames with up to 8 bytes of data per frame ? message filter capabilities ? remote transmission request (rtr) support ? programmable bit rate up to 1 mbps ? listen only mode ? sw readable error counter and indicator ? sleep mode: wake the device from sleep with activity on the rx pin ? supports two or three wire interface to external transceiver (tx, rx, and enable). the three-wire interface is compatible with the philips phy; the phy is not included on-chip. the three wires can be routed to any i/o ? enhanced interrupt controller ? can receive and transmit buffers status ? can controller error status including busoff ? receive path ? 16 receive buffers each with its own message filter ? enhanced hardware message filter implementation that covers the id, ide and rtr ? devicenet addressing support ? multiple receive buffers linkable to build a larger receive message array ? automatic transmission request (rtr) response handler ? lost received message notification ? transmit path ? eight transmit buffers ? programmable transmit priority ? round robin ? fixed priority ? message transmissions abort capability 7.5.2 software tools support can controller configuration in tegrated into psoc creator: ? can configuration walkthrough with bit timing analyzer ? receive filter setup can node 1 psoc can controller can transceiver tx rx en can node 2 can node n can_h can_l can_h can_l can_h can_l can drivers can bus
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 41 of 95 figure 7-19. can controller block diagram 7.6 usb psoc includes a dedicated full-speed (12 mbps) usb 2.0 transceiver supporting all four usb transfer types: control, interrupt, bulk, and isochronous. psoc creator provides full configuration support. usb interfaces to hosts through two dedicated usbio pins, which are detailed in the ?i/o system and routing? section on page 25 . usb includes the following features: ? eight unidirectional data endpoints ? one bidirectional control endpoint 0 (ep0) ? shared 512-byte buffer for the eight data endpoints ? dedicated 8-byte buffer for ep0 ? two memory modes ? manual memory management with no dma access ? manual memory management with manual dma access ? internal 3.3 v regulator for transceiver ? internal 48 mhz osc illator that auto locks to usb bus clock, requiring no external crystal for usb (usb equipped parts only) ? interrupts on bus and each endpoint event, with device wakeup ? usb reset, suspend, and resume operations ? bus powered and self powered modes figure 7-20. usb txmessage0 txreq txabort txmessage7 txreq txabort txmessage1 txreq txabort txmessage6 txreq txabort priority arbiter rxmessage0 rxmessage15 rxmessage1 rxmessage14 rxmessage handler acceptance code 0 acceptance mask 0 acceptance code 1 acceptance mask 1 acceptance code 14 acceptance mask 14 acceptance code 15 acceptance mask 15 rtr rxmessages 0-15 tx can framer crc generator rx can framer crc check bit timing error detection crc form ack bit stuffing bit error overload arbitration txinterrupt request (if enabled) rxinterrupt request (if enabled) error status error active error passive bus off tx error counter rx error counter errinterrupt request (if enabled) wakeup request rx buffer status rxmessage available tx buffer status txreq pending rx tx s i e (serial interface engine) 48 mhz imo arbiter 512 x 8 sram usb i/o d+ d? interrupts system bus external 22 resistors
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 42 of 95 7.7 timers, counters, and pwms the timer/counter/pwm peripheral is a 16-bit dedicated peripheral providing three of the most common embedded peripheral features. as almost all embedded systems use some combination of timers, counters, and pwms. four of them have been included on this psoc device family. additional and more advanced functionality timers, counters, and pwms can also be instantiated in universal digital blocks (udbs) as required. psoc creator allows designers to choose the timer, counter, and pwm features that they require. the tool set utilizes the most optimal resources available. the timer/counter/pwm peripheral can select from multiple clock sources, with input and output signals connected through the dsi routing. dsi routing allows input and output connections to any device pin and any internal digital signal accessible through the dsi. each of the four instances has a compare output, terminal count output (optional complementary compare output), and programmable interrupt request line. the timer/counter/pwms are configurable as free running, one shot, or enable input controlled. the peripheral has timer reset and capture inputs, and a kill input for control of the comparator outputs. the peripheral supports full 16-bit capture. timer/counter/pwm features include: ? 16-bit timer/counter/pwm (down count only) ? selectable clock source ? pwm comparator (configurable for lt, lte, eq, gte, gt) ? period reload on start, reset, and terminal count ? interrupt on terminal count, compare true, or capture ? dynamic counter reads ? timer capture mode ? count while enable signal is asserted mode ? free run mode ? one shot mode (stop at end of period) ? complementary pwm outputs with deadband ? pwm output kill figure 7-21. timer/counter/pwm 7.8 i 2 c the i 2 c peripheral provides a synchronous two wire interface designed to interface the psoc device with a two wire i 2 c serial communication bus. the bus is compliant with philips ?the i 2 c specification? version 2.1. additional i 2 c interfaces can be instantiated using universal digital blocks (udbs) in psoc creator, as required. to eliminate the need for excessive cpu intervention and overhead, i 2 c specific support is provided for status detection and generation of framing bits. i 2 c operates as a slave, a master, or multimaster (slave and master). in slave mode, the unit always listens for a start condition to begin sending or receiving data. master mode supplies the ability to generate the start and stop conditions and initiate transactions. multimaster mode provides clock synchronization and arbitration to allow multiple masters on the same bus. if master mode is enabled and slave mode is not enabled, the block does not generate interrupts on externally generated start conditions. i 2 c interfaces through the dsi routing and allows direct connections to any gpio or sio pins. i 2 c features include: ? slave and master, transmitter, and receiver operation ? byte processing for low cpu overhead ? interrupt or polling cpu interface ? support for bus speeds up to 1 mbps (3.4 mbps in udbs) ? 7 or 10-bit addressing (10-bit addressing requires firmware support) ? smbus operation (through firmware support - smbus supported in hardware in udbs) data transfers follow the format shown in figure 7-22 . after the start condition (s), a slave address is sent. this address is 7 bits long followed by an eighth bit which is a data direction bit (r/w) - a 'zero' indicates a transmission (write), a 'one' indicates a request for data (read). a data transfer is always terminated by a stop condition (p) generated by the master. however, if a master still wis hes to communicate on the bus, it can generate a repeated start condition (sr) and address another slave without first generating a stop condition. various combinations of read/write formats are then possible within such a transfer. timer / counter / pwm 16-bit clock reset enable capture kill irq compare tc / compare!
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 43 of 95 figure 7-22. i 2 c complete transfer timing 8. analog subsystem the analog programmable system creates application specific combinations of both standard and advanced analog signal processing blocks. these blocks are then interconnected to each other and also to any pin on the device, providing a high level of design flexibility and ip security. the features of the analog subsystem are ou tlined here to provide an overview of capabilities and architecture. ? flexible, configurable analog routing architecture provided by analog globals, analog mux bus, and analog local buses ? successive approximation (sar) adc ? one 8-bit dac that provides either voltage or current output ? two comparators with optional connection to configurable lut outputs ? capsense subsystem to enabl e capacitive touch sensing ? precision reference for generating an accurate analog voltage for internal analog blocks figure 8-1. analog subsystem block diagram sda scl 1 - 7 8 9 1 - 7 8 9 1 - 7 8 9 start condition address r/w ack data ack data ack stop condition analog interface cmp cmp capsense subsystem dsi array clock distribution decimator config & status registers phub cpu comparators gpio port gpio port dac a n a l o g r o u t i n g a n a l o g r o u t i n g sar adc precision reference
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 44 of 95 the psoc creator software program provides a user-friendly interface to configure the analog connections between the gpio and various analog resources and also connections from one analog resource to another. psoc creator also provides component libraries that allow you to configure the various analog blocks to perfo rm application specific functions. the tool also generates api interface libraries that allow you to write firmware that allows the communication between the analog peripheral and cpu/memory. 8.1 analog routing the cy8c38 family of devices has a flexible analog routing architecture that provides the capability to connect gpios and different analog blocks, and also route signals between different analog blocks. one of the strong points of this flexible routing architecture is that it allows dynamic routing of input and output connections to the different ana log blocks. all analog routing switches are open when the device is in sleep or hibernate mode. for information on how to make pin selections for optimal analog routing, refer to the application note, an58304 - psoc ? 3 and psoc ? 5 - pin selection for analog designs. 8.1.1 features ? flexible, configurable analog routing architecture ? 16 analog globals (ag) and two analog mux buses (amuxbus) to connect gpios and the analog blocks ? each gpio is connected to one analog global and one analog mux bus ? 8 analog local buses (abus) to route signals between the different analog blocks ? multiplexers and switches for input and output selection of the analog blocks 8.1.2 functional description analog globals (ags) and analog mux buses (amuxbus) provide analog connectivity between gpios and the various analog blocks. there are 16 ags in the cy8c38 family. the analog routing architecture is divided into four quadrants as shown in figure 8-2 . each quadrant has four analog globals (agl[0..3], agl[4..7], agr[0..3], agr[4..7]). each gpio is connected to the corresponding ag through an analog switch. the analog mux bus is a shared routing resource that connects to every gpio through an analog switch. there are two amuxbus routes in cy8c38, one in the left half (amuxbusl) and one in the right half (amuxbusr), as shown in figure 8-2 .
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 45 of 95 figure 8-2. cy8c52 analog interconnect vddio0 sio p12[3] sio p12[2] gpio p15[3] gpio p15[2] sio p12[1] sio p12[0] gpio p3[7] gpio p3[6] vddio3 vccd vssd vddd gpio p6[0] gpio p6[3] gpio p6[2] gpio p6[1] gpio p15[4] gpio p15[5] gpio p2[0] gpio p2[4] gpio p2[3] gpio p2[2] gpio p2[1] vddio2 gpio p2[5] gpio p2[7] gpio p2[6] sio p12[4] sio p12[5] gpio p6[4] gpio p6[5] gpio p6[6] gpio p6[7] vddio1 sio p12[6] sio p12[7] usb io p15[6] usb io p15[7] vddd vssd vccd gpxt p15[0] gpxt p15[1] gpio p3[5] gpio p3[4] gpio p3[3] gpio p3[2] gpio p3[1] agr[4] agr[7] agr[6] agr[5] agl[0] agl[3] agl[2] agl[1] agr[0] agr[3] agr[2] agr[1] *** * * * * * * * * * denotes pins on all packages v0 i0 vidac 76543210 76543210 7 6 5 4 3 2 1 0 comp0 comp1 comparator agl[4] agl[7] agl[6] agl[5] agl[0] agl[3] agl[2] agl[1] agr[0] agr[3] agr[2] agr[1] agr[4] agr[7] agr[6] agr[5] notes: amuxbusr amuxbusl i0 rev #51 2-april-2010 vssa vssd vcca gpio p0[5] * gpio p0[7] * gpio p1[3] gpio p1[2] gpio p1[1] gpio p1[0] * * * * gpio p1[4] * gpio p1[5] * gpio p1[6] * gpio p1[7] * gpio p5[7] gpio p5[6] gpio p5[5] gpio p5[4] gpio p4[4] gpio p4[7] gpio p4[6] gpio p4[5] gpio p5[2] gpio p5[3] gpio p5[1] gpio p5[0] gpio p4[3] gpio p4[2] abusl0 * * ** * * * * * * * * * * * agl[4] agl[7] agl[6] agl[5] gpio p4[0] gpio p4[1] amuxbusl amuxbusr amuxbusl amuxbusr amuxbusl amuxbusr abusl1 abusl2 abusl3 abusr3 abusr2 abusr1 abusr0 exvrefl exvrefr ind vssb vboost xres vssd * * * * vbat 90 13 44 gpio p3[0] gpio p0[6] * lpf in0 out0 in1 out1 5 mux group switch group connection large ( ~200 ohms) small ( ~870 ohms ) switch resistance vss ref ts adc gpio p0[0] * gpio p0[1] * gpio p0[2] * gpio p0[3] * gpio p0[4] * amuxbusr amuxbusl analog globals analog bus 0123 3210 analog bus analog globals refbufr refbufl in out ref in out ref vssa capsense vssa sar adc vp (+) vn (-) exvrefl2 exvrefl1 refs vrefhi_out exvrefl1 exvrefl2 cmp0_vref (1.024v) vref_cmp1 (0.256v) vdda refbuf_vref1 (1.024v) refbuf_vref2 (1.2v) sar_vref2 (1.2v) sar_vref1 (1.024v) 3210 0123 lcd signals are not shown. * : vdda * vbe vdda vdda/2 refmux[2:0] en_resvda dac0 + - + - sar0 cmp_muxvn[1:0] vdda/2 bg_vda_swabusl0 cmp1_vref cmp1_vref cmp1_vref refsel[1:0] refbufl_ cmp refbufr_ cmp cmp0_vref (1.024v) bg_vda_res_en refbuf_vref1 (1.024v) refbuf_vref2 (1.2v) refsel[1:0] swout swin swout swin lpf
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 46 of 95 analog local buses (abus) are routing resources located within the analog subsystem and are used to route signals between different analog blocks. there are eight abus routes in cy8c38, four in the left half (abusl [0:3]) and four in the right half (abusr [0:3]) as shown in figure 8-2 . using the abus saves the analog globals and analog mux buses from being used for interconnecting the analog blocks. multiplexers and switches exist on the various buses to direct signals into and out of the analog blocks. a multiplexer can have only one connection on at a time, whereas a switch can have multiple connections on simultaneously. in figure 8-2 , multiplexers are indicated by grayed ovals and switches are indicated by transparent ovals. 8.2 successive approximation adc the cy8c52 family of devices has a sar adc. this adc is 12-bit at up to 1 msps, with single-ended or differential inputs, making it useful for a wide variety of sampling and control applications. 8.2.1 functional description in a sar adc an analog input signal is sampled and compared with the output of a dac. a binary search algorithm is applied to the dac and used to determine the output bits in succession from msb to lsb. a block diagram of the sar adc is shown in figure 8-3 . figure 8-3. sar adc block diagram the input is connected to the analog globals and muxes. the frequency of the clock is 16 time s the sample rate; the maximum clock rate is 16 mhz. 8.2.2 conversion signals writing a start bit or assertion of a start of frame (sof) signal is used to start a conversion. sof can be used in applications where the sampling period is longer than the conversion time, or when the adc needs to be synchronized to other hardware. this signal is optional and does not need to be connected if the sar adc is running in a continuous mode. a digital clock or udb output can be used to drive this input. when the sar is first powered up or awakened from any of the sleeping modes, there is a power up wait time of 10 s before it is ready to start the first conversion. when the conversion is complete, a status bit is set and the output signal end of frame (eof) asserts and remains asserted until the value is read by either the dma controller or the cpu. the eof signal may be used to trigger an interrupt or a dma request. 8.2.3 operational modes a one_shot control bit is used to set the sar adc conversion mode to either continuous or one conversion per sof signal. dma transfer of continuous samples, without cpu intervention, is supported. 8.3 comparators the cy8c52 family of devices contains two comparators in a device. comparators have these features: ? input offset factory trimmed to less than 5 mv ? rail-to-rail common mode input range (v ssa to v cca ) ? speed and power can be traded off by using one of three modes: fast, slow, or ultra low power ? comparator outputs can be routed to look up tables to perform simple logic functions and then can also be routed to digital blocks ? the positive input of the comparators may be optionally passed through a low pass filter. two filters are provided ? comparator inputs can be connected to gpio or dac output 8.3.1 input and output interface the positive and negative inputs to the comparators come from the analog global buses, the analog mux line, the analog local bus and precision reference through multiplexers. the output from each comparator could be routed to any of the two input luts. the output of that lut is routed to the ud b digital system interface. s/ h dac array vin vrefp vrefn comparator sar digital d0:d11 clock autozero reset clock d0:d11 power filtering power ground vrefp vrefn
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 47 of 95 figure 8-4. analog comparator 8.3.2 lut the cy8c52 family of devices contains two luts. the lut is a two input, one output lookup table that is driven by one or two of the comparators in the chip. the output of any lut is routed to the digital system inte rface of the udb array. from the digital system interface of the udb a rray, these signals can be connected to udbs, dma controller, i/o, or the interrupt controller. the lut control word written to a register sets the logic function on the output. the available lut functions and the associated control word is shown in table 8-1 . 8.4 lcd direct drive the psoc lcd driver system is a highly configurable peripheral designed to allow psoc to directly drive a broad range of lcd glass. all voltages are generated on chip, eliminating the need for external components. with a high multiplex ratio of up to 1/16, the cy8c52 family lcd driver system can drive a maximum of 736 segments. the psoc lcd driver module was also designed with the conservative power budget of portable devices in mind, enabling different lcd drive modes and power down modes to conserve power. psoc creator provides an lcd segment drive component. the component wizard provides easy and flexible configuration of lcd resources. you can specify pins for segments and commons along with other options. the software configures the device to meet the required specifications. this is possible because of the programmability inherent to psoc devices. key features of the psoc lcd segment system are: ? lcd panel direct driving ? type a (standard) and type b (low power) waveform support ? wide operating voltage range support (2 v to 5 v) for lcd panels ? static, 1/2, 1/3, 1/4, 1/5 bias voltage levels ? internal bias voltage generation through internal resistor ladder ? up to 62 total common and segment outputs ? up to 1/16 multiplex for a ma ximum of 16 backplane/common outputs ? up to 62 front plane/segment outputs for direct drive ? drives up to 736 total segments (16 backplane 46 front plane) ? up to 64 levels of soft ware controlled contrast ? ability to move display data fr om memory buffer to lcd driver through dma (without cpu intervention) ? adjustable lcd refresh rate from 10 hz to 150 hz anaif + _ + _ comp0 comp1 4 lut0 lut1 lut2 lut3 4 4 4 4 4 4 4 from analog routing from analog routing udbs table 8-1. lut function vs. program word and inputs control word output (a and b are lut inputs) 0000b false (?0?) 0001b a and b 0010b a and (not b ) 0011b a 0100b (not a ) and b 0101b b 0110b a xor b 0111b a or b 1000b a nor b 1001b a xnor b 1010b not b 1011b a or (not b ) 1100b not a 1101b (not a ) or b 1110b a nand b 1111b true (?1?)
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 48 of 95 ? ability to invert lcd display for negative image ? three lcd driver drive modes, allowing power optimization ? lcd driver configurable to be active when psoc is in limited active mode figure 8-5. lcd system 8.4.1 lcd segment pin driver each gpio pin contains an lcd driver circuit. the lcd driver buffers the appropriate output of the lcd dac to directly drive the glass of the lcd. a register setting determines whether the pin is a common or segment. the pin?s lcd driver then selects one of the six bias voltages to drive the i/o pin, as appropriate for the display data. 8.4.2 display data flow the lcd segment driver system reads display data and generates the proper output voltages to the lcd glass to produce the desired image. display data resides in a memory buffer in the system sram. each time you need to change the common and segment driver voltages, the next set of pixel data moves from the memory buffer into the port data registers via dma. 8.4.3 udb and lcd segment control a udb is configured to generate the global lcd control signals and clocking. this set of signals is routed to each lcd pin driver through a set of dedicated lcd global routing channels. in addition to generating the global lcd control signals, the udb also produces a dma request to initiate the transfer of the next frame of lcd data. 8.4.4 lcd dac the lcd dac generates the contrast control and bias voltage for the lcd system. the lcd dac produces up to five lcd drive voltages plus ground, based on the selected bias ratio. the bias voltages are driven out to gpio pins on a dedicated lcd bias bus, as required. 8.5 capsense the capsense system provides a versatile and efficient means for measuring capacitance in applications such as touch sense buttons, sliders, proximity det ection, etc. the capsense system uses a configuration of system resources, including a few hardware functions primarily targeted for capsense. specific resource usage is detailed in the capsense component in psoc creator. a capacitive sensing method using a delta-sigma modulator (csd) is used. it provides capacitance sensing using a switched capacitor technique with a delta-sigma modulator to convert the sensing current to a digital code. 8.6 temp sensor die temperature is used to establish programming parameters for writing flash. die temperatur e is measured using a dedicated sensor based on a forward biased transistor. the temperature sensor has its own auxiliary adc. 8.7 dac the cy8c32 parts contain a dac. the dac is 8-bit and can be configured for either voltage or current output. the dac supports capsense, power supply regulation, and waveform generation. the dac has the following features: ? adjustable voltage or current output in 255 steps ? programmable step size (range selection) ? eight bits of calibration to correct 25% of gain error ? source and sink option for current output ? 8-msps conversion rate for current output ? 1-msps conversion rate for voltage output ? monotonic in nature ? data and strobe inputs can be provided by the cpu or dma, or routed directly from the dsi ? dedicated low-resistance output pin for high-current mode lcd driver block udb dma display ram lcd dac pin global clock phub
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 49 of 95 figure 8-6. dac block diagram 8.7.1 current dac the idac can be configured for the ranges 0 to 32 a, 0 to 256 a, and 0 to 2.04 ma. the idac can be configured to source or sink current. 8.7.2 voltage dac for the vdac, the current dac output is routed through resistors. the two ranges available for the vdac are 0 to 1.024 v and 0 to 4.096 v. in voltage mode any load connected to the output of a dac should be purely capacitive (the output of the vdac is not buffered). 9. programming, debug interfaces, resources the cortex-m3 has internal debugging components, tightly integrated with the cpu, providing the following features: ? swd access ? fpb block for implementing breakpoints and code patches ? dwt block for implementing watchpoints, trigger resources, and system profiling ? itm for support of printf-style debugging psoc devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. swd supports all programming and debug features of the device. the swv provides trace output from the dwt and itm. for more information on psoc 5 programming, refer to the application note an64359 - in-system programming for psoc ? 5. cortex-m3 debug and trace functionality enables full device debugging in the final system using the standard production device. it does not require special interfaces, debugging pods, simulators, or emulators. only the standard programming connections are required to fully support debug. the psoc creator ide software provides fully integrated programming and debug support for psoc devices. the low cost miniprog3 programmer and debugger is designed to provide full programming and debug support of psoc devices in conjunction with the psoc creator ide. psoc interfaces are fully compatible with industry standard third party tools. all cortex-m3 debug and trace modules are disabled by default and can only be enabled in firmware. if not enabled, the only way to reenable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables them. disabling debug and trace features, robust flash protection, and hiding custom analog and digital functionality inside the psoc device provide a level of security not possible with multichip application solutions. additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device. permanently disabling interfaces is not recommended in most applications because the designer then cannot access the device. because all programming, debug, and test interfaces are disabled when device security is enabled, psocs with device security enabled may not be returned for failure analysis. 9.1 debug port acquisition prior to programming or debugging, the debug port must be acquired. there is a time window after reset within which the port acquire must be completed. this window is initially 8 s; if eight clocks are detected on the swdck line within the 8 s period, the time window will then be extended to 400 s to complete the port acquire operation. the port acquire key must be transmitted over one of the two swd pin pairs; see swd interface on page 49 . for a detailed description of the acquire key sequence, refer to the technical reference manual. 9.2 swd interface swd uses two pins, either two port 1 pins or the usbio d+ and d- pins. the usbio pins are us eful for in system programming of usb solutions that would otherwise require a separate programming connector. one pin is used for the data clock and the other is used for data input and output. swd can be enabled on only one of the pin pairs at a time. swd is used for debugging or for programming the flash memory. in addition, the swd interface supports the swv trace output. the swd interface also includes the swv interface, see ?swv interface? on page 51 . when using the swd/swv pins as standard gpio, make sure that the gpio functionality and pcb circuits do not interfere with swd/swv use. the swv trace output is automatically activated whenever the swd is activated. reference ? source ? scaler ? i source ? range ? 1x , ? 8x , ? 64x i sink ? range ???? 1x , ? 8x , ? 64x ? r ? ? 3r ? ? vout ? ? iout ? ?
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 50 of 95 figure 9-1. swd interface connections between psoc 5 and programmer v ssd , ? v ssa v ddd , ? v dda , ? v ddio0 , ? v ddio1 , ? v ddio2 , ? v ddio3 1, 2, 3 swdck ? (p1[1] ? or ? p15[7]) ?? 4 swdio ? (p1[0] ? or ? p15[6]) xres gnd gnd swdck swdio xres host programmer psoc 5 v dd 1 the voltage levels of the host programmer and the psoc 5 voltage domains involved in programming should be the same. xres pin is powered by v ddio1 . the usb swd pins are powered by v ddd . so for programming using the usb swd pins with xres pin, the v ddd , v ddio1 ? of psoc 5 should be at the same voltage level as host v dd . rest of psoc 5 voltage domains ( v dda , ? v ddio0 , ? v ddio2 , ? v ddio3 ) need not be at the same voltage level as host programmer. the port 1 swd pins are powered by v ddio1 . so v ddio1 of psoc 5 should be at same voltage level as host v dd for port 1 swd programming. rest of psoc 5 voltage domains ( ? v ddd , ?? v dda , ? v ddio0 , ? v ddio2 , ? ???? v ddio3 ) need not be at the same voltage level as host programmer. 2 vdda must be greater than or equal to all other power supplies (vddd, vddio?s) in psoc 5. 3 for power cycle mode programming, xres pin is not required. but the host programmer must have the capability to toggle power (vddd, vdda, all vddio?s) to psoc 5. this may typically require external interface circuitry to toggle power which will depend on the programming setup. the power supplies can be brought up in any sequence, however, once stable, vdda must be greater than or equal to all other supplies. 4 when usb swd pins are used for programming, the p1[1] swdck pin must be externally connected to ground using external pull-down resistor (around 100 k resistor). this is required for p15[7] swdck signal to be seen by psoc 5's internal logic. v dd
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 51 of 95 9.3 debug features the cy8c52 supports the following debug features: ? halt and single-step the cpu ? view and change cpu and peripheral registers, and ram addresses ? six program address breakpoints and two literal access breakpoints ? data watchpoint events to cpu ? patch and remap instruction from flash to sram ? debugging at the full speed of the cpu ? compatible with psoc creator and miniprog3 programmer and debugger 9.4 trace features the following trace features are supported: ? data watchpoint on access to data address, address range, or data value ? software event monitoring, ?printf-style? debugging 9.5 swv interface the swv interface provides trace data to a debug host via the cypress miniprog3 or an external trace port analyzer. . 9.6 programming features the swd interface provides full programming support. the entire device can be erased, programmed, and verified. designers can increase flash protection levels to protect firmware ip. flash protection can only be reset after a full device erase. individual flash blocks can be erased, programmed, and verified, if block secu rity settings permit. 9.7 device security psoc 5 offers an advanced security feature called device security, which permanently disables all test, programming, and debug ports, protecting your app lication from external access. the device security is activated by programming a 32-bit key (0x50536f43) to a write once latch (wol). the wol must be programmed at v ddd 3.3 v. the write once latch is a type of nonvolatile latch (nvl). the cell itself is an nvl with additional logic wrapped around it. each wol device contains four bytes (32 bits) of data. the wrapper outputs a ?1? if a super-majority (28 of 32) of its bits match a pre-determined pattern (0x50536f43); it outputs a ?0? if this majority is not reached. when the output is 1, the write once nv latch locks the part out of debug and test modes; it also permanently gates off the ability to erase or alter the contents of the latch. matching all bits is intentionally not required, so that single (or few) bit failures do not deassert the wol output. the state of the nvl bits after wafer processing is truly random with no tendency toward 1 or 0. the wol only locks the part af ter the correct 32-bit key (0x50536f43) is loaded into the nvl's volatile memory, programmed into the nvl's nonvolatile cells, and the part is reset. the output of the wol is only sampled on reset and used to disable the access. this precaution prevents anyone from reading, erasing, or altering the contents of the internal memory. you can write the key into the wol to lock out external access only if no flash protection is set (see ?flash security? section on page 16 ). however, after setting the values in the wol, you still have access to the part until it is reset. therefore, you can write the key into the wol, program the flash protection data, and then reset the part to lock it. if the device is protected with a wol setting, cypress cannot perform failure analysis and, therefore, cannot accept rmas from customers. the wol can be read out via serial wire debug (swd) port to electrically identify protected parts. you can write the key in wol to lock out external access only if no flash protection is set. for more information on how to take full advantage of the security features in psoc see the psoc 5 trm. disclaimer note the following details of the flash code protection features on cypress devices. cypress products meet the specifications contained in their particular cypress data sheets. cypress believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. there may be methods, unknown to cypress, that can breach the code protection features. any of these methods, to our knowledge, would be dishonest and possibly illegal. neither cypress nor any other semiconductor manufacturer can guarantee the security of their code. code protection does not mean that we are guaranteeing the product as ?unbreakable.? cypress is willing to work with the customer who is concerned about the integrity of their code. code protection is constantly evolving. we at cypress are committed to continuously improving the code protection features of our products.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 52 of 95 10. development support the cy8c52 family has a rich set of documentation, development tools, and online resources to assist you during your development process. visit psoc.cypress.com/ getting-started to find out more. 10.1 documentation a suite of documentation, to ensure that you can find answers to your questions quickly, supports the cy8c52 family. this section contains a list of some of the key documents. software user guide : a step-by-step guide for using psoc creator. the software user guide shows you how the psoc creator build process works in detail, how to use source control with psoc creator, and much more. component data sheets : the flexibility of psoc allows the creation of new peripherals (components) long after the device has gone into production. component data sheets provide all of the information needed to select and use a particular component, including a functional description, api documentation, example code, and ac/dc specifications. application notes : psoc application notes discuss a particular application of psoc in depth; examples include brushless dc motor control and on-chip filtering. application notes often include example projects in addition to the application note document. technical reference manual : psoc creator makes designing with psoc as easy as dragging a peripheral onto a schematic, but, when low level details of the psoc device are required, use the technical reference manual (trm) as your guide. note visit www.arm.com for detailed documentation about the cortex-m3 cpu. 10.2 online in addition to print documentation, the cypress psoc forums connect you with fellow psoc users and experts in psoc from around the world, 24 hours a day, 7 days a week. 10.3 tools with industry standard cores, programming, and debugging interfaces, the cy8c52 family is part of a development tool ecosystem. visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use psoc creator ide, supported third party compilers, programmers, debuggers, and development kits.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 53 of 95 11. electrical specifications specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. the unique flexibility of the psoc udbs and analog blocks enable many functions to be implemented in psoc creator components, see the component data sheets for full ac/dc specifications of individual functions. see the ?example peripherals? section on page 31 for further explanation of psoc creator components. 11.1 absolute maximum ratings note usage above the absolute maximum conditions listed in ta b l e 11-1 may cause permanent damage to the device. exposure to maximum conditions for extended periods of time may affect device reliability. when used below maximum conditions but above normal operating conditions the device may not operate to specification. table 11-1. absolute maximum ratings dc specifications parameter description conditions min typ max units t stg storage temperature recommended storage temper- ature is +25 c 25 c. extended duration storage temperatures above 85 c degrade reliability. ?55 25 100 c v dda analog supply voltage relative to v ssa ?0.5 ? 6 v v ddd digital supply voltage relative to v ssd ?0.5 ? 6 v v ddio i/o supply voltage relative to v ssd ?0.5 ? 6 v v cca direct analog core voltage input ?0.5 ? 1.95 v v ccd direct digital core voltage input ?0.5 ? 1.95 v v ssa analog ground voltage v ssd ? 0.5 ? v ssd + 0.5 v v gpio [11] dc input voltage on gpio includes signals sourced by v dda and routed internal to the pin. v ssd ? 0.5 ? v ddio + 0.5 v v sio dc input voltage on sio output disabled v ssd ? 0.5 ? 7 v output enabled v ssd ? 0.5 ? 6 v v ind voltage at boost converter input 0.5 ? 5.5 v v bat boost converter supply v ssd ? 0.5 ? 5.5 v ivddio current per v ddio supply pin ? ? 20 ma lu latch up current [12] ?140 ? 140 ma esd hbm electrostatic discharge voltage human body model 500 ? ? v esd cdm electrostatic discharge voltage charge device model 500 ? ? v notes 11. the v ddio supply voltage must be greater than the maximum analog voltage on the associated gpio pins. maximum analog voltage on gpio pin v ddio v dda 12. meets or exceeds jedec spec eia/jesd78 ic latch-up test.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 54 of 95 11.2 device level specifications specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. 11.2.1 device level specifications table 11-2. dc specifications parameter description conditions min typ max units v dda analog supply voltage and input to analog core regulator analog core regulator enabled 2.7 ? 5.5 v v dda analog supply voltage, analog regulator bypassed analog core regulator disabled 1.71 1.8 1.89 v v ddd digital supply voltage relative to v ssd digital core regulator enabled 2.7 ? v dda [13] v v ddd digital supply voltage, digital regulator bypassed digital core regulator disabled 2.7 1.8 1.89 v v ddio [14] i/o supply voltage relative to v ssio 1.71 ? v dda [13] v v cca direct analog core voltage input (analog regulator bypass) analog core regulator disabled 1.71 1.8 1.89 v v ccd direct digital core voltage input (digital regulator bypass) digital core regulator disabled 1.71 1.8 1.89 v i dd [15] active mode, v dd = 2.7 v?5.5 v execute from flash cache, see cache controller on page 11 and flash program memory on page 16 cpu at 6 mhz t = ?40 c ? ? ? ma t = 25 c ? 5 ? ma t = 85 c ? ? ? ma sleep mode [16] cpu = off rtc = on (= eco32k on, in low power mode) sleep timer = on (= ilo on at 1 khz) [16] wdt = off por = on boost = off sio pins in single ended input, unregulated output mode v dd = v ddio = 4.5?5.5 v t= ?40 c ? ? ? a t= 25 c ? ? ? a t= 85 c ? ? ? a v dd = v ddio = 2.7?3.6 v t= ?40 c ? ? ? a t= 25 c ? 3 ? a t= 85 c ? ? ? a hibernate mode hibernate mode current all regulators and oscillators off. sram retention gpio interrupts are active boost = off sio pins in single ended input, unregulated output mode v dd = v ddio = 4.5?5.5 v t= ?40 c ? ? ? na t= 25 c ? ? ? na t= 85 c ? ? ? na v dd = v ddio = 2.7?3.6 v t= ?40 c ? ? ? na t= 25 c ? 1000 ? na t= 85 c ? ? ? na notes 13. the power supplies can be brought up in any sequence however once stable v dda must be greater than or equal to all other supplies. 14. the v ddio supply voltage must be greater than the maximum analog voltage on the associated gpio pins. maximum analog voltage on gpio pin v ddio v dda . 15. the current consumption of additional peri pherals that are implemented only in progr ammed logic blocks can be found in their respective data sheets, available in psoc creator, the integrated design environm ent. to estimate total current, find cp u current at frequency of interest and add p eripheral currents for your particular system from the device data sheet and component data sheets. 16. sleep timer generates periodic interrupts to wake up the cpu. this specification applies only to those times that the cpu is off.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 55 of 95 notes 17. ibased on device characte rization (not production tested). table 11-3. ac specifications [17] parameter description conditions min typ max units f cpu cpu frequency dc ? 40.01 mhz f busclk bus frequency dc ? 40.01 mhz svdd v dd ramp rate ? ? 1 v/ns t io_init time from v ddd /v dda /v ccd /v cca ipor to i/o ports set to their reset states ? ? 10 s t startup time from v ddd /v dda /v ccd /v cca min operating voltage to cpu executing code at reset vector no pll used, imo boot mode 12 mhz typ. ? ? 66 s t sleep wakeup from limited active mode ? application of non-lvd interrupt to beginning of execution of next cpu instruction ? 20 ? s t hibernate wakeup form hibernate mode ? application of external interrupt to beginning of execution of next cpu instruction ? ? 100 s
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 56 of 95 11.3 power regulators specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. 11.3.1 digital core regulator figure 11-1. regulators v cc vs v dd figure 11-2. digital regulator psrr vs frequency and v dd 11.3.2 analog core regulator figure 11-3. analog regulator psrr vs frequency and v dd table 11-4. digital core re gulator dc specifications parameter description conditions min typ max units v ddd input voltage 2.7 ? 5.5 v v ccd output voltage ? 1.80 ? v regulator output capacitor 10%, x5r ceramic or better. the two v ccd pins must be shorted together, with as short a trace as possible, see power system on page 21 ?1?f table 11-5. analog core re gulator dc specifications parameter description conditions min typ max units v dda input voltage 2.7 ? 5.5 v v cca output voltage ? 1.80 ? v regulator output capacitor 10%, x5r ceramic or better ? 1 ? f
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 57 of 95 11.3.3 inductive boost regulator. table 11-6. inductive boost regulator dc specifications unless otherwise specified, operating conditions are: v bat = 2.4 v, v out = 3.3 v, i out = 40 ma, f sw = 400 khz, l boost = 10 h, c boost = 22 f || 0.1 f parameter description conditions min typ max units v bat input voltage includes startup 1.8 ? 3.6 v i out load current [18, 19] v bat = 1.8 ? 3.6 v, v out = 3.6 ? 5.0 v, external diode ??50ma v bat = 1.8 ? 3.6 v, v out = 2.7 ? 3.6 v, internal diode ??75ma i lpk inductor peak current ? ? 700 ma i q quiescent current boost active mode ? 200 ? a boost standby mode, 32 khz external crystal oscillator, i out < 1 a ?12 ? a v out boost voltage range [20, 21] 3.0 v 2.85 3.00 3.15 v 3.3 v 3.14 3.30 3.47 v 3.6 v 3.42 3.60 3.78 v 5.0 v external diode required 4.75 5.00 5.25 v reg load load regulation ? ? 3.8 % reg line line regulation ? ? 4.1 % efficiency l boost = 10 h 70 85 ? % l boost = 22 h 82 90 ? % notes 18. for output voltages above 3.6 v, an external diode is required. 19. maximum output current applies for output voltages 4x input voltage. 20. based on device characteri zation (not production tested). 21. at boost frequency of 2 mhz, v out is limited to 2 x v bat . at 400 khz, v out is limited to 4 x v bat. table 11-7. inductive boost regulator ac specifications unless otherwise specified, operating conditions are: v bat = 2.4 v, v out = 3.3 v, i out = 40 ma, f sw = 400 khz, l boost = 10 h, c boost = 22 f || 0.1 f. parameter description conditions min typ max units v ripple ripple voltage (peak-to-peak) f sw = 400 khz, i out = 10 ma ? ? 100 mv f sw switching frequency ? 0.1, 0.4, or 2 ? mhz
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 58 of 95 11.4 inputs and outputs specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. unless otherwise specified, all charts and graphs show typical values. 11.4.1 gpio note 22. based on device charact erization (not production tested). table 11-8. recommended external components for boost circuit parameter description conditions min typ max units l boost boost inductor 4.7 10 47 h c boost filter capacitor [ 22 ] 10 22 47 f i f external schottky diode average forward current external schottky diode is required for v out > 3.6 v 1 ? ? a v r 20 ? ? v table 11-9. gpio dc specifications parameter description conditions min typ max units v ih input voltage high threshold cmos input, prt[x]ctl = 0 0.7 v ddio ??v v il input voltage low threshold cmos input, prt[x]ctl = 0 ? ? 0.3 v ddio v v ih input voltage high threshold lvttl input, prt[x]ctl = 1 2.0 ? ? v v il input voltage low threshold lvttl input, prt[x]ctl = 1 ? ? 0.8 v v oh output voltage high i oh = 4 ma at 3.3 v ddio v ddio ? 0.6 ? ? v v ol output voltage low i ol = 8 ma at 3.3 v ddio ??0.6v rpullup pull up resistor 3.5 5.6 8.5 k rpulldown pull down resistor 3.5 5.6 8.5 k i il input leakage current (absolute value) [23] 25 c, v ddio = 3.0 v ? ? 2 na c in input capacitance [23] ??7pf v h input voltage hysteresis (schmitt-trigger) [23] ?40?mv idiode current through protection diode to v ddio and v ssio ? ? 100 a rglobal resistance pin to analog global bus 25 c, v ddio = 3.0 v ? 320 ? rmux resistance pin to analog mux bus 25 c, v ddio = 3.0 v ? 220 ?
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 59 of 95 figure 11-4. gpio output high voltage and current figure 11-5. gpio output low voltage and current figure 11-6. gpio output rise and fall times, fast strong mode, v ddio = 3.3 v, 25 pf load figure 11-7. gpio output rise and fall times, slow strong mode, v ddio = 3.3 v, 25 pf load table 11-10. gpio ac specifications parameter description conditions min typ max units trisef rise time in fast strong mode [ 23 ] 3.3 v v ddio cload = 25 pf ? ? 12 ns tfallf fall time in fast strong mode [ 23 ] 3.3 v v ddio cload = 25 pf ? ? 12 ns trises rise time in slow strong mode [ 23 ] 3.3 v v ddio cload = 25 pf ? ? 60 ns tfalls fall time in slow strong mode [ 23 ] 3.3 v v ddio cload = 25 pf ? ? 60 ns fgpioout gpio output operating frequency fast strong drive mode 90/10% v ddio into 25 pf ? ? 33 mhz 3.3 v < v ddio < 5.5 v, slow strong drive mode 90/10% v ddio into 25 pf ? ? 7 mhz 2.7 v < v ddio < 3.3 v, slow strong drive mode 90/10% v ddio into 25 pf ? ? 3.5 mhz fgpioin gpio input operating frequency 2.7 v < v ddio < 5.5 v 90/10% v ddio ? ? 40 mhz note 23. based on device charact erization (not production tested).
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 60 of 95 11.4.2 sio table 11-11. sio dc specifications parameter description conditions min typ max units vinmax maximum input voltage all allowed values of vddio and vddd, see section 11.2.1 ??5.5v vinref input voltage reference (differential input mode) 0.5 ? 0.52 v ddio v voutref output voltage reference (regulated output mode) v ddio > 3.7 1 ? v ddio ? 1 v v ddio < 3.7 1 ? v ddio ? 0.5 v v ih input voltage high threshold gpio mode cmos input 0.7 v ddio ??v differential input mode [24] hysteresis disabled sio_ref + 0.2 ? ? v v il input voltage low threshold gpio mode cmos input ? ? 0.3 v ddio v differential input mode [24] hysteresis disabled ? ? sio_ref ? 0.2 v v oh output voltage high unregulated mode i oh = 4 ma, v ddio = 3.3 v v ddio ? 0.4 ? ? v regulated mode [24] i oh = 1 ma sio_ref ? 0.65 ? sio_ref + 0.2 v regulated mode [24] i oh = 0.1 ma sio_ref ? 0.3 ? sio_ref + 0.2 v v ol output voltage low v ddio = 3.30 v, i ol = 25 ma ? ? 0.8 v rpullup pull up resistor 3.5 5.6 8.5 k rpulldown pull down resistor 3.5 5.6 8.5 k i il input leakage current (absolute value) [25] v ih < vddsio 25 c, vddsio = 3.0 v, v ih = 3.0 v ? ? 14 na v ih > vddsio 25 c, vddsio = 0 v, v ih = 3.0 v ? ? 10 a c in input capacitance [25] ??7pf v h input voltage hysteresis (schmitt-trigger) [25] single ended mode (gpio mode) ?40?mv differential mode ? 35 ? mv idiode current through protection diode to v ssio ??100a notes 24. see figure 6-9 on page 27 and figure 6-12 on page 30 for more in formation on sio reference. 25. based on device charact erization (not production tested).
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 61 of 95 figure 11-8. sio output high voltage and current, unregulated mode figure 11-9. sio output low voltage and current, unregulated mode figure 11-10. sio output high voltage and current, regulat- ed mode note 26. based on device charact erization (not production tested). table 11-12. sio ac specifications parameter description conditions min typ max units trisef rise time in fast strong mode (90/10%) [ 26 ] cload = 25 pf, v ddio = 3.3 v ? ? 12 ns tfallf fall time in fast strong mode (90/10%) [ 26 ] cload = 25 pf, v ddio = 3.3 v ? ? 12 ns trises rise time in slow strong mode (90/10%) [ 26 ] cload = 25 pf, v ddio = 3.0 v ? ? 75 ns tfalls fall time in slow strong mode (90/10%) [ 26 ] cload = 25 pf, v ddio = 3.0 v ? ? 60 ns
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 62 of 95 figure 11-11. sio output rise and fall times, fast strong mode, v ddio = 3.3 v, 25 pf load figure 11-12. sio output rise and fall times, slow strong mode, v ddio = 3.3 v, 25 pf load fsioout sio output operating frequency unregulated output (gpio) mode, fast strong drive mode 90/10% v ddio into 25 pf ? ? 33 mhz 3.3 v < v ddio < 5.5 v, unregulated output (gpio) mode, slow strong drive mode 90/10% v ddio into 25 pf ? ? 5 mhz 2.7 v < v ddio < 3.3 v, unregulated output (gpio) mode, slow strong drive mode 90/10% v ddio into 25 pf ? ? 4 mhz regulated output mode, fast strong drive mode output continuously switching into 25 pf ? ? 20 mhz regulated output mode, slow strong drive mode output continuously switching into 25 pf ? ? 2.5 mhz fsioin sio input operating frequency 90/10% v ddio ? ? 40 mhz table 11-12. sio ac specifications (continued) parameter description conditions min typ max units
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 63 of 95 11.4.3 usbio for operation in gpio mode, the standard range for v ddd applies, see device level specifications on page 54 . figure 11-13. usbio output high voltage and current, gpio mode figure 11-14. usbio output low voltage and current, gpio mode table 11-13. usbio dc specifications parameter description conditions min typ max units rusbi usb d+ pull-up resistance with idle bus 0.900 ? 1.575 k rusba usb d+ pull-up resistance while receiving traffic 1.425 ? 3.090 k vohusb static output high 15 k 5% to vss, internal pull-up enabled 2.8 ? 3.6 v volusb static output low 15 k 5% to vss, internal pull-up enabled ? ? 0.3 v vihgpio input voltage high, gpio mode v ddd 3 v 2 ? ? v vilgpio input voltage low, gpio mode v ddd 3 v ? ? 0.8 v vohgpio output voltage high, gpio mode i oh = 4 ma, v ddd 3 v 2.4 ? ? v volgpio output voltage low, gpio mode i ol = 4 ma, v ddd 3 v ? ? 0.3 v vdi differential input sensitivity |(d+)?(d?)| ? ? 0.2 v vcm differential input common mode range 0.8 ? 2.5 v vse single ended receiver threshold 0.8 ? 2 v rps2 ps/2 pull-up resistance in ps/2 mode, with ps/2 pull-up enabled 3 ? 7 k rext external usb series resistor in series with each usb pin 21.78 (?1%) 22 22.22 (+1%) zo usb driver output impedance including rext 28 ? 44 c in usb transceiver input capacitance ? ? 20 pf i il input leakage current (absolute value) 25 c, v ddd = 3.0 v ? ? 2 na
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 64 of 95 figure 11-15. usbio output rise and fall times, gpio mode, v ddd = 3.3 v, 25 pf load table 11-14. usbio ac specifications parameter description conditions min typ max units tdrate full-speed data rate average bit rate 12 ? 0.25% 12 12 + 0.25% mhz tjr1 receiver data jitter tolerance to next transition ?8 ? 8 ns tjr2 receiver data jitter tolerance to pair transition ?5 ? 5 ns tdj1 driver differential jitter to next transition ?3.5 ? 3.5 ns tdj2 driver differential jitter to pair transition ?4 ? 4 ns tfdeop source jitter for differential transition to se0 transition ?2 ? 5 ns tfeopt source se0 interval of eop 160 ? 175 ns tfeopr receiver se0 interval of eop 82 ? ? ns tfst width of se0 interval during differential transition ? ? 14 ns fgpio_out gpio mode output operating frequency 3 v v ddd 5.5 v ? ? 20 mhz v ddd = 2.7 v ? ? 6 mhz tr_gpio rise time, gpio mode, 10%/90% v ddd v ddd > 3 v, 25 pf load ? ? 12 ns v ddd = 2.7 v, 25 pf load ? ? 40 ns tf_gpio fall time, gpio mode, 90%/10% v ddd v ddd > 3 v, 25 pf load ? ? 12 ns v ddd = 2.7 v, 25 pf load ? ? 40 ns
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 65 of 95 11.4.4 xres table 11-15. usb driver ac specifications parameter description conditions min typ max units tr transition rise time ? ? 20 ns tf transition fall time ? ? 20 ns tr rise/fall time matching v usb_5 , v usb_3.3 , see usb dc specifications on page 79 90% ? 111% vcrs output signal crossover voltage 1.3 ? 2 v note 27. based on device charact erization (not production tested). table 11-16. xres dc specifications parameter description conditions min typ max units v ih input voltage high threshold 0.7 v ddio ??v v il input voltage low threshold ? ? 0.3 v ddio v rpullup pull up resistor 3.5 5.6 8.5 k c in input capacitance [27] ?3 pf v h input voltage hysteresis (schmitt-trigger) [27] ?100?mv idiode current through protection diode to v ddio and v ssio ??100a table 11-17. xres ac specifications parameter description conditions min typ max units t reset reset pulse width 1 ? ? s
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 66 of 95 11.5 analog peripherals specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. 11.5.1 voltage reference 11.5.2 sar adc note 28. based on device characteri zation (not production tested). table 11-18. voltage reference specifications parameter description conditions min typ max units v ref precision reference voltage initial trimming 1.017 (?0.7%) 1.024 1.033 (+0.9%) v temperature drift [28] ? ? 20 ppm/c long term drift ? 100 ? ppm/khr thermal cycling drift (stability) [28] ?100 ? ppm table 11-19. sar adc dc specifications parameter description conditions min typ max units resolution ? ? 12 bits number of channels ? single-ended ? ? no of gpio number of channels ? differential differential pair is formed using a pair of neighboring gpio. ??no of gpio/2 monotonicity [30] yes ? ? ge gain error ? ? 0.1 % v os input offset voltage ? ? 0.2 mv i dd current consumption ? ? 1 ma input voltage range ? single-ended [30] v ssa ?v dda v input voltage range ? differential [30] v ssa ?v dda v psrr power supply rejection ratio [30] 70 ? ? db cmrr common mode rejection ratio 35 ? ? db inl integral non linearity [30] internal reference ? ? 2lsb dnl differential non linearity [30] internal reference ? ? 2lsb r in input resistance [30] ?tbd ? k table 11-20. sar adc ac specifications parameter description conditions min typ max units sample rate [30] ? ? 770 ksps startup time [30] ? ? 10 s sinad signal-to-noise ratio [30] 44 ? ? db thd total harmonic distortion [30] ? ? 0.02 %
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 67 of 95 11.5.3 analog globals 11.5.4 comparator table 11-21. analog globals ac specifications parameter description conditions min typ max units rppag resistance pin-to-pin through analog global v dda = 3.0 v ? 939 1461 rppmuxbus resistance pin-to-pin through analog mux bus v dda = 3.0 v ? 721 1135 notes 29. the recommended procedure for using a custom trim val ue for the on-chip comparators are found in the trm. 30. based on device characteri zation (not production tested). table 11-22. comparator dc specifications parameter description conditions min typ max units v os input offset voltage in fast mode factory trim, vin 0.5 v ? 10 mv input offset voltage in slow mode factory trim, vin 0.5 v ? 9 mv v os input offset voltage in fast mode [29] custom trim ? ? 4 mv input offset voltage in slow mode [29] custom trim ? ? 4 mv v os input offset voltage in ultra low power mode ?12 ? mv v hyst hysteresis hysteresis enable mode ? 10 32 mv v icm input common mode voltage high current / fast mode v ssa ?v dda ? 0.1 v low current / slow mode v ssa ?v dda v ultra low power mode v ssa ?v dda ? 0.9 cmrr common mode rejection ratio ? 50 ? db i cmp high current mode/fast mode [30] ? ? 400 a low current mode/slow mode [30] ? ? 100 a ultra low power mode [30] ?6 ? a table 11-23. comparator ac specifications parameter description conditions min typ max units t resp response time, high current mode [30] 50 mv overdrive, measured pin-to-pin ? 75 110 ns response time, low current mode [30] 50 mv overdrive, measured pin-to-pin ? 155 200 ns response time, ultra low power mode [30] 50 mv overdrive, measured pin-to-pin ?55 ? s
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 68 of 95 11.5.5 current digital-to-analog converter (idac) see the idac component data sheet in psoc creat or for full electrical specifications and apis. unless otherwise specified, all charts and graphs show typical values. table 11-24. idac dc specifications parameter description conditions min typ max units resolution ? ? 8 bits i out output current at code = 255 range = 2.04 ma, code = 255, rload = 600 ? ? 2.04 ? ma range = 255 a, code = 255, rload = 600 ? 255 ? a range = 31.875 a, code = 255, rload = 600 ? 31.875 ? a monotonicity ? ? yes ezs zero scale error ? 0 2.5 lsb eg gain error ? ? 5 % tc_eg temperature coefficient of gain error range = 2.04 ma ? ? 0.04 % / c range = 255 a ? ? 0.04 % / c range = 31.875 a ? ? 0.05 % / c inl integral nonlinearity range = 255 a, codes 8 ? 255, rload = 600 , cload = 15 pf ? ? 3 lsb dnl differential nonlinearity, non-monotonic range = 255 a, rload = 600 , cload = 15 pf ? ? 1.6 lsb vcompliance dropout voltage, source or sink mode voltage headroom at max current, rload to vdda or rload to vssa, vdiff from vdda 1 ? ? v note 31. based on device characte rization (not production tested).
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 69 of 95 figure 11-16. idac inl vs input code, range = 255 a, source mode figure 11-17. idac inl vs inpu t code, range = 255 a, sink mode i dd operating current, code = 0 slow mode, source mode, range = 31.875 a ? 44 100 a slow mode, source mode, range = 255 a, ? 33 100 a slow mode, source mode, range = 2.04 ma ? 33 100 a slow mode, sink mode, range = 31.875 a ? 36 100 a slow mode, sink mode, range = 255 a ? 33 100 a slow mode, sink mode, range = 2.04 ma ? 33 100 a fast mode, source mode, range = 31.875 a ? 310 500 a fast mode, source mode, range = 255 a ? 305 500 a fast mode, source mode, range = 2.04 ma ? 305 500 a fast mode, sink mode, range = 31.875 a ? 310 500 a fast mode, sink mode, range = 255 a ? 300 500 a fast mode, sink mode, range = 2.04 ma ? 300 500 a table 11-24. idac dc specifications (continued) parameter description conditions min typ max units
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 70 of 95 figure 11-18. idac dnl vs input code, range = 255 a, source mode figure 11-19. idac dnl vs inpu t code, range = 255 a, sink mode figure 11-20. idac inl vs temperature, range = 255 a, fast mode figure 11-21. idac dnl vs temperature, range = 255 a, fast mode
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 71 of 95 figure 11-22. idac full scal e error vs temperature, range = 255 a, source mode figure 11-23. idac full scale error vs temperature, range = 255 a, sink mode figure 11-24. idac operating current vs temperature, range = 255 a, code = 0, source mode figure 11-25. idac operatin g current vs temperature, range = 255 a, code = 0, sink mode
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 72 of 95 figure 11-26. idac step response, codes 0x40 - 0xc0, 255 a mode, source mode, fast mode, vdda = 5 v figure 11-27. idac glitch re sponse, codes 0x7f - 0x80, 255 a mode, source mode, fast mode, vdda = 5 v figure 11-28. idac psrr vs frequency table 11-25. idac ac specifications parameter description conditions min typ max units f dac update rate ? ? 8 msps t settle settling time to 0.5 lsb range = 31.875 a or 255 a, full scale transition, fast mode, 600 15-pf load ? ? 125 ns
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 73 of 95 11.5.6 voltage digital to analog converter (vdac) see the vdac component data sheet in psoc creator for full electrical specifications and apis. unless otherwise specified, all charts and graphs show typical values. figure 11-29. vdac inl vs input code, 1 v mode fi gure 11-30. vdac dnl vs input code, 1 v mode table 11-26. vdac dc specifications parameter description conditions min typ max units resolution ? 8 ? bits inl1 integral nonlinearity 1 v scale ? 2.1 2.5 lsb dnl1 differential nonlinearity 1 v scale ? 0.3 1 lsb rout output resistance 1 v scale ? 4 ? k 4 v scale ? 16 ? k v out output voltage range, code = 255 1 v scale ? 1 ? v 4 v scale, vdda = 5 v ? 4 ? v monotonicity ? ? yes ? v os zero scale error ? 0 0.9 lsb eg gain error 1 v scale ? ? 2.5 % 4 v scale ? ? 2.5 % tc_eg temperature coefficient, gain error 1 v scale ? ? 0.03 %fsr / c 4 v scale ? ? 0.03 %fsr / c i dd operating current slow mode ? ? 100 a fast mode ? ? 500 a
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 74 of 95 figure 11-31. vdac inl vs temperature, 1 v mode fi gure 11-32. vdac dnl vs temperature, 1 v mode figure 11-33. vdac full scal e error vs temperature, 1 v mode figure 11-34. vdac full scal e error vs temperature, 4 v mode figure 11-35. vdac operating current vs temperature, 1 v mode, slow mode figure 11-36. vdac operating current vs temperature, 1 v mode, fast mode
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 75 of 95 figure 11-37. vdac step response, codes 0x40 - 0xc0, 1 v mode, fast mode, vdda = 5 v figure 11-38. vdac glitch resp onse, codes 0x7f - 0x80, 1 v mode, fast mode, vdda = 5 v figure 11-39. vdac psrr vs frequency table 11-27. vdac ac specifications parameter description conditions min typ max units f dac update rate 1 v scale ? ? 1000 ksps 4 v scale ? ? 250 ksps tsettlep settling time to 0.1%, step 25% to 75% 1 v scale, cload = 15 pf ? 0.45 1 s 4 v scale, cload = 15 pf ? 0.8 3.2 s tsettlen settling time to 0.1%, step 75% to 25% 1 v scale, cload = 15 pf ? 0.45 1 s 4 v scale, cload = 15 pf ? 0.7 3 s
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 76 of 95 11.5.7 temperature sensor 11.5.8 lcd direct drive table 11-28. temperature sensor specifications parameter description conditions min typ max units temp sensor accuracy range: ?40 c to +85 c ? 8 ? c table 11-29. lcd direct drive dc specifications parameter description conditions min typ max units i cc lcd system operating current bus clock = 3 mhz, vddio = vdda = 3 v, 4 commons, 16 segments, 1/4 duty cycle, 50 hz frame rate, no glass connected ?63 ? a i cc_seg current per segment driver strong drive mode ? 260 ? a v bias lcd bias range (v bias refers to the main output voltage(v0) of lcd dac) v dda 3 v and v dda v bias 2? 5v lcd bias step size v dda 3 v and v dda v bias ? 9.1 v dda ?mv lcd capacitance per segment/common driver drivers may be combined ? 500 5000 pf long term segment offset ? ? 20 mv i out output drive current per segment driver) vddio = 5.5v, strong drive mode 355 ? 710 a table 11-30. lcd direct drive ac specifications parameter description conditions min typ max units f lcd lcd frame rate 10 50 150 hz
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 77 of 95 11.6 digital peripherals specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. 11.6.1 timer the following specifications apply to the timer/counter/pwm peripheral in timer mode. timers can also be implemented in udbs; f or more information, see the timer component data sheet in psoc creator. 11.6.2 counter the following specifications apply to the timer/counter/pwm peripheral, in counter mode. counters can also be implemented in udbs; for more information, see the counter component data sheet in psoc creator . table 11-31. timer dc specifications parameter description conditions min typ max units block current consumption 16-bit timer, at listed input clock frequency ? ? ? a 3 mhz ? 15 ? a 12 mhz ? 60 ? a 40 mhz ? 260 ? a table 11-32. timer ac specifications parameter description conditions min typ max units operating frequency dc ? 40.01 mhz capture pulse width (internal) 25 ? ? ns capture pulse width (external) 30 ? ? ns timer resolution 25 ? ? ns enable pulse width 25 ? ? ns enable pulse width (external) 30 ? ? ns reset pulse width 25 ? ? ns reset pulse width (external) 30 ? ? ns table 11-33. counter dc specifications parameter description conditions min typ max units block current consumption 16-bit counter, at listed input clock frequency ? ? ? a 3 mhz ? 15 ? a 12 mhz ? 60 ? a 40 mhz ? 260 ? a table 11-34. counter ac specifications parameter description conditions min typ max units operating frequency dc ? 40.01 mhz capture pulse 25 ? ? ns resolution 25 ? ? ns pulse width 25 ? ? ns pulse width (external) 30 ns enable pulse width 25 ? ? ns enable pulse width (external) 30 ? ? ns reset pulse width 25 ? ? ns reset pulse width (external) 30 ? ? ns
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 78 of 95 11.6.3 pulse width modulation the following specifications apply to the timer/counter/pwm peripheral, in pwm mode. pwm components can also be implemented in udbs; for more information, see the pwm component data sheet in psoc creator. 11.6.4 i 2 c controller area network [ 32 ] table 11-35. pwm dc specifications parameter description conditions min typ max units block current consumption 16-bit pwm, at listed input clock frequency ? ? ? a 3 mhz ? 15 ? a 12 mhz ? 60 ? a 40 mhz ? 260 ? a table 11-36. pwm ac specifications parameter description conditions min typ max units operating frequency dc ? 40.01 mhz pulse width 25 ? ? ns pulse width (external) 30 ? ? ns kill pulse width 25 ? ? ns kill pulse width (external) 30 ? ? ns enable pulse width 25 ? ? ns enable pulse width (external) 30 ? ? ns reset pulse width 25 ? ? ns reset pulse width (external) 30 ? ? ns table 11-37. fixed i 2 c dc specifications parameter description conditions min typ max units block current consumption enabled, configured for 100 kbps ? ? 250 a enabled, configured for 400 kbps ? ? 260 a table 11-38. fixed i 2 c ac specifications parameter description conditions min typ max units bit rate ? ? 1 mbps table 11-39. can dc specifications parameter description conditions min typ max units i dd block current consumption ? ? 200 a note 32. refer to iso 11898 specification for details. table 11-40. can ac specifications parameter description conditions min typ max units bit rate minimum 8 mhz clock ? ? 1 mbit
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 79 of 95 11.6.5 usb 11.6.6 universal digital blocks (udbs) psoc creator provides a library of pre-built and tested standard digital peripherals (uart, spi, lin, prs, crc, timer, counter, pwm, and, or, and so on) that are mapped to the udb array. see the component data sheets in psoc creator for full ac/dc specificatio ns, apis, and example code. note 33. rise/fall time matching (tr) not guaranteed, see usb driver ac specifications on page 65. table 11-41. usb dc specifications parameter description conditions min typ max units v usb_5 device supply for usb operation usb configured, usb regulator enabled 4.35 ? 5.25 v v usb_3.3 usb configured, usb regulator bypassed 3.15 ? 3.6 v v usb_3 usb configured, usb regulator bypassed [33] 2.85 ? 3.6 v i usb_configured device supply current in device active mode, bus clock and imo = 24 mhz v ddd = 5 v, f cpu = 1.5 mhz ? 10 ? ma v ddd = 3.3 v, f cpu = 1.5 mhz ? 8 ? ma i usb_suspended device supply current in device sleep mode v ddd = 5 v, connected to usb host, picu configured to wake on usb resume signal ?0.5 ? ma v ddd = 5 v, disconnected from usb host ?0.3 ? ma v ddd = 3.3 v, connected to usb host, picu configured to wake on usb resume signal ?0.5 ? ma v ddd = 3.3 v, disconnected from usb host ?0.3 ? ma table 11-42. udb ac specifications parameter description conditions min typ max units datapath performance f max_timer maximum frequency of 16-bit timer in a udb pair ? ? 40.01 mhz f max_adder maximum frequency of 16-bit adder in a udb pair ? ? 40.01 mhz f max_crc maximum frequency of 16-bit crc/prs in a udb pair ? ? 40.01 mhz pld performance f max_pld maximum frequency of a two-pass pld function in a udb pair ? ? 40.01 mhz clock to output performance t clk_out propagation delay for clock in to data out, see figure 11-40 . 25 c ? 20 25 ns t clk_out propagation delay for clock in to data out, see figure 11-40 . worst-case placement, routing, and pin selection ? ? 55 ns
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 80 of 95 figure 11-40. clock to output performance 11.7 memory specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. 11.7.1 flash 11.7.2 eeprom table 11-43. flash dc specifications parameter description conditions min typ max units erase and program voltage v ddd pin 2.7 ? 5.5 v table 11-44. flash ac specifications parameter description conditions min typ max units t write row write time (e rase + program) ? 15 20 ms t erase row erase time ? 10 13 ms row program time ? 5 7 ms t bulk bulk erase time (256 kb) ? ? 140 ms sector erase time (16 kb) ? ? 15 ms total device program time (including swd and other overhead) ? ? 20 seconds flash data retention time, retention period measured from last erase cycle average ambient temp. t a 55 c, 100 k erase/program cycles 20 ? ? years average ambient temp. t a 85 c, 10 k erase/program cycles 10 ? ? table 11-45. eeprom dc specifications parameter description conditions min typ max units erase and program voltage 2.7 ? 5.5 v
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 81 of 95 11.7.3 sram table 11-46. eeprom ac specifications parameter description conditions min typ max units t write single row erase/wr ite cycle time ? 2 20 ms eeprom data retention time, retention period measured from last erase cycle average ambient temp, t a 25 c, 1m erase/program cycles 20 ? ? years average ambient temp, t a 55 c, 100 k erase/program cycles 20 ? ? average ambient temp. t a 85 c, 10 k erase/program cycles 10 ? ? table 11-47. sram dc specifications parameter description conditions min typ max units v sram sram retention voltage 1.2 ? ? v eeprom data retention time, retention period measured from last erase cycle average ambient temp, t a 25 c, 1m erase/program cycles 20 ? ? years average ambient temp, t a 55 c, 100 k erase/program cycles 20 ? ? average ambient temp. t a 85 c, 10 k erase/program cycles 10 ? ? table 11-48. sram ac specifications parameter description conditions min typ max units f sram sram operating frequency dc ? 40.01 mhz
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 82 of 95 11.8 psoc system resources specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. 11.8.1 voltage monitors 11.8.2 interrupt controller table 11-49. voltage monitors dc specifications parameter description conditions min typ max units lvi trip voltage lvi_a/d_sel[3:0] = 0011b 2.38 2.45 2.53 v lvi_a/d_sel[3:0] = 0100b 2.62 2.71 2.79 v lvi_a/d_sel[3:0] = 0101b 2.87 2.95 3.04 v lvi_a/d_sel[3:0] = 0110b 3.11 3.21 3.31 v lvi_a/d_sel[3:0] = 0111b 3.35 3.46 3.56 v lvi_a/d_sel[3:0] = 1000b 3.59 3.70 3.81 v lvi_a/d_sel[3:0] = 1001b 3.84 3.95 4.07 v lvi_a/d_sel[3:0] = 1010b 4.08 4.20 4.33 v lvi_a/d_sel[3:0] = 1011b 4.32 4.45 4.59 v lvi_a/d_sel[3:0] = 1100b 4.56 4.70 4.84 v lvi_a/d_sel[3:0] = 1101b 4.83 4.98 5.13 v lvi_a/d_sel[3:0] = 1110b 5.05 5.21 5.37 v lvi_a/d_sel[3:0] = 1111b 5.30 5.47 5.63 v hvi trip voltage 5.57 5.75 5.92 v table 11-50. voltage monitors ac specifications parameter description conditions min typ max units response time ? ? 1 s note 34. arm cortex-m3 nvic spec. visit www.arm.com for detailed documentation about the cortex-m3 cpu. table 11-51. interrupt controller ac specifications parameter description conditions min typ max units delay from interrupt signal input to isr code execution from main line code [34] ? ? 12 tcy cpu delay from interrupt signal input to isr code execution from isr code (tail-chaining) [34] ? ? 6 tcy cpu
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 83 of 95 11.8.3 swd interface 11.8.4 tpiu interface table 11-55. swd interface ac specifications [35] parameter description conditions min typ max units f_swdck swdclk frequency 3.3 v v ddd 5 v ? ? 12 [37] mhz 2.7 v v ddd < 3.3 v ? ? 7 [37] mhz 2.7 v v ddd < 3.3 v, swd over usbio pins ??5.5 [37] mhz t_swdi_setup swdio input setup before swdck high t = 1/f_swdck max t/4 ? ? t_swdi_hold swdio input hold after swdck high t = 1/f_swdck max t/4 ? ? t_swdo_valid swdck high to swdio output t = 1/f_swdck max ? ? 2t/5 t_swdo_hold swdio output hold after swdck low t = 1/f_swdck max t/4 ? ? notes 35. based on device characteriz ation (not production tested). 36. f_tck must also be no more than 1/3 cpu clock frequency. 37. f_swdck must also be no more than 1/3 cpu clock frequency. 38. swv signal frequency and bit rate are limited by gpio out put frequency, see ?gpio ac specifications? on page 59. table 11-56. tpiu interface ac specifications [35] parameter description conditions min typ max units swv bit rate ? ? 33 [38] mbit
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 84 of 95 11.9 clocking specifications are valid for ?40 c t a 85 c and t j 100 c, except where noted. specifications are valid for 2.7 v to 5.5 v, except where noted. unless otherwise specified, all charts and graphs show typical values. 11.9.1 32 khz ex ternal crystal 11.9.2 internal main oscillator figure 11-41. imo current vs. frequency note 39. based on device characterization (not production tested). table 11-57. 32 khz external crystal dc specifications [39] parameter description conditions min typ max units i cc operating current low power mode ? 0.25 1.0 a cl external crystal capacitance ? 6 ? pf dl drive level ? ? 1 w table 11-58. 32 khz external crystal ac specifications parameter description conditions min typ max units f frequency ? 32.768 ? khz t on startup time high power mode ? 1 ? s table 11-59. imo dc specifications parameter description conditions min typ max units supply current 24 mhz ? ? 300 a 12 mhz ? ? 200 a 6 mhz ? ? 180 a 3 mhz ? ? 150 a table 11-60. imo ac specifications parameter description conditions min typ max units f imo imo frequency stability (with factory trim) 24 mhz ?6 ? 6 % 12 mhz ?6 ? 6 % 6 mhz ?4 ? 4 % 3 mhz ?4 ? 4 %
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 85 of 95 figure 11-42. imo frequency variation vs. temperature figure 11-43. imo frequency variation vs. v ccd startup time [39] from enable (during normal system operation) or wakeup from low power state ??12s jp-p jitter (peak to peak) [39] f = 24 mhz ? 0.9 ? ns f = 3 mhz ? 1.6 ? ns jperiod jitter (long term) [39] f = 24 mhz ? 0.9 ? ns f = 3 mhz ? 12 ? ns table 11-60. imo ac specifications (continued) parameter description conditions min typ max units
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 86 of 95 11.9.3 internal low speed oscillator figure 11-44. ilo frequency variation vs. temperature figure 11-45. ilo frequency variation vs. v dd 11.9.4 external crystal oscillator 11.9.5 external clock reference table 11-61. ilo dc specifications parameter description conditions min typ max units i cc operating current f out = 1 khz ? 0.3 1.7 a f out = 33 khz ? 1.0 2.6 a f out = 100 khz ? 1.0 2.6 a leakage current power down mode ? 2.0 15 na table 11-62. ilo ac specifications parameter description conditions min typ max units startup time, all frequencies turbo mode ? ? 2.5 ms f ilo ilo frequencies (trimmed) 100 khz 45 100 200 khz 1 khz 0.5 1 2 khz ilo frequencies (untrimmed) 100 khz 30 100 300 khz 1 khz 0.3 1 3.5 khz table 11-63. eco ac specifications parameter description conditions min typ max units f crystal frequency range 4 ? 25 mhz table 11-64. external clock reference ac specifications [40] parameter description conditions min typ max units external frequency range 0 ? 33 mhz input duty cycle range measured at v ddio /2 30 50 70 % input edge rate v il to v ih 0.1 ? ? v/ns note 40. based on device characterization (not production tested).
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 87 of 95 11.9.6 phase-locked loop table 11-65. pll dc specifications parameter description conditions min typ max units i dd pll operating current in = 3 mhz, out = 24 mhz ? 200 ? a table 11-66. pll ac specifications parameter description conditions min typ max units fpllin pll input frequency [41] 1?40mhz pll intermediate frequency [42] output of prescaler 1 ? 3 mhz fpllout pll output frequency [41] 24 ? 40 mhz lock time at startup ? ? 250 s jperiod-rms jitter (rms) [43] ??250ps notes 41. this specification is guaranteed by testing the pll across the specif ied range using the imo as the source for the pll. 42. pll input divider, q, must be set so that the input fre quency is divided down to the intermediate frequency range. value for q ranges from 1 to 16. 43. based on device characteriz ation (not production tested).
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 88 of 95 12. ordering information in addition to the features listed in table 12-1 , every cy8c52 device includes: up to 256 kb flash, 64 kb sram, 2 kb eeprom, a precision on-chip voltage reference, precision oscillators, flash, dma, a fixed function i 2 c, swd programming and debug, and more. in addition to these features, the flexible udbs and analog subsec tion support a wide range of peripherals. to assist you in se lecting the ideal part, psoc creator makes a part recommendation after you choose the components required by your application. all cy8c 52 derivatives incorporate device and flash security in user-selectable security levels; see the trm for details . 12.1 part numbering conventions psoc 5 devices follow the part numbering convention described here . all fields are single character alphanumeric (0, 1, 2, ?, 9 , a, b, ?, z) unless stated otherwise. cy8cabcdefg-xxx ? a: architecture ? 3: psoc 3 ? 5: psoc 5 ? b: family group within architecture ? 2: cy8c52 family ? 3: cy8c53 family ? 4: cy8c54 family ? 5: cy8c55 family ? c: speed grade ? 4: 40 mhz ? 8: 67 mhz ? d: flash capacity ? 5: 32 kb ? 6: 64 kb ? 7: 128 kb ? 8: 256 kb ? ef: package code ? two character alphanumeric ? ax: tqfp ? lt: qfn ? g: temperature range ? c: commercial ? i: industrial ? a: automotive ? xxx: peripheral set ? three character numeric ? no meaning is associated with these three characters table 12-1. cy8c52 family with arm cortex-m3 cpu part number mcu core analog digital i/o [ 45 ] package device id [ 46 ] cpu speed (mhz) flash (kb) sram (kb) eeprom (kb) lcd segment drive adc dac comparators sc/ct analog blocks opamps dfb capsense udbs [ 44 ] 16-bit timer/pwm fs usb can 2.0b total i/o gpio sio usbio CY8C5248LTI-030 40 256 64 2 ? 1x12-bit sar 1 2 ? ? ? ? 24 4 ? ? 46 36 8 2 68-pin qfn 0x0e116069 cy8c5248axi-047 40 256 64 2 ? 1x12-bit sar 1 2 ? ? ? ? 24 4 ? ? 70 60 8 2 100-pin tqfp 0x0e134069 cy8c5247lti-089 40 128 32 2 ? 1x12-bit sar 1 2 ? ? ? ? 24 4 ? ? 46 36 8 2 68-pin qfn 0x0e141069 cy8c5247axi-051 40 128 32 2 ? 1x12-bit sar 1 2 ? ? ? ? 24 4 ? ? 70 60 8 2 100-pin tqfp 0x0e114069 cy8c5246lti-029 40 64 16 2 ? 1x12-bit sar 1 2 ? ? ? ? 24 4 ? ? 46 36 8 2 68-pin qfn 0x0e143069 cy8c5246axi-054 40 64 16 2 ? 1x12-bit sar 1 2 ? ? ? ? 24 4 ? ? 70 60 8 2 100-pin tqfp 0x0e13c069 notes 44. udbs support a wide variety of functionality including spi, lin, uart, timer, counter, pwm, prs, and others. individual func tions may use a fraction of a udb or multiple udbs. multiple functions can share a single udb. see example peripherals on page 31 for more information on how udbs can be used. 45. the i/o count includes all types of digital i/o: gpio, sio, and the two usb i/o. see i/o system and routing on page 25 for details on th e functionality of each of these types of i/o. 46. the device id has three major fields. th e most significant nibble (left digit) is the version, followed by a 2 byte part num ber and a 3 nibble manufacturer id.
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 89 of 95 all devices in the psoc 5 cy8c52 family comply to rohs-6 specifications, demonstrating the commitment by cypress to lead-free products. lead (pb) is an alloying element in solders that has resulted in environmental concerns due to potential toxicity. cy press uses nickel-palladium-gold (nipdau) technology for the majority of leadframe-based packages. a high level review of the cypress pb-free position is available on our website. specific package information is also available . package material declaration data sheets (pmdds) identify all substanc es contained within cypress packages. pmdds also confirm the absence of many banned substances. the information in the pmdds will help cypress customers plan for recycling or other ?end of life? requirements. 13. packaging architecture cypress prefix family group within architecture speed grade flash capacity package code temperature range peripheral set 5: psoc 5 8: 80 mhz 8: 256 kb ax: tqfp i: industrial examples cy8c 5 5 x a 8 8ix x -x 5: cy8c55 family /pv table 13-1. package characteristics parameter description conditions min typ max units t a operating ambient temperature ?40 25 85 c t j operating junction temperature ?40 ? 100 c tja package ja (68-pin qfn) ? 15 ? c/watt tja package ja (100-pin tqfp) ? 34 ? c/watt tjc package jc (68-pin qfn) ? 13 ? c/watt tjc package jc (100-pin tqfp) ? 10 - c/watt table 13-2. solder reflow peak temperature package maximum peak temperature maximum time at peak temperature 68-pin qfn 260 c 30 seconds 100-pin tqfp 260 c 30 seconds table 13-3. package moisture sensitivity level (msl), ipc/jedec j-std-2 package msl 68-pin qfn msl 3 100-pin tqfp msl 3
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 90 of 95 figure 13-1. 68-pin qfn 8x8 with 0.4 mm pitch package outline (sawn version) figure 13-2. 100-pin tqfp (14 14 1.4 mm) package outline 001-09618 *c 51-85048 *e
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 91 of 95 14. acronyms table 14-1. acronyms us ed in this document acronym description abus analog local bus adc analog-to-digital converter ag analog global ahb amba (advanced microcontroller bus archi- tecture) high-performance bus, an arm data transfer bus alu arithmetic logic unit amuxbus analog multiplexer bus api application programming interface apsr application program status register arm ? advanced risc machine, a cpu architecture atm automatic thump mode bw bandwidth can controller area network, a communications protocol cmrr common-mode rejection ratio cpu central processing unit crc cyclic redundancy check, an error-checking protocol dac digital-to-analog converter, see also idac, vdac dfb digital filter block dio digital input/output, gpio with only digital capabilities, no analog. see gpio. dma direct memory access, see also td dnl differential nonlinearity, see also inl dnu do not use dr port write data registers dsi digital system interconnect dwt data watchpoint and trace eco external crystal oscillator eeprom electrically erasable programmable read-only memory emi electromagnetic interference eoc end of conversion eof end of frame epsr execution program status register esd electrostatic discharge fir finite impulse response, see also iir fpb flash patch and breakpoint fs full-speed gpio general-purpose input/output, applies to a psoc pin hvi high-voltage interrupt, see also lvi, lvd ic integrated circuit idac current dac, see also dac, vdac ide integrated development environment i 2 c, or iic inter-integrated circuit, a communications protocol iir infinite impulse response, see also fir ilo internal low-speed oscillator, see also imo imo internal main oscillator, see also ilo inl integral nonlinearity, see also dnl i/o input/output, see also gpio, dio, sio, usbio ipor initial power-on reset ipsr interrupt program status register irq interrupt request itm instrumentation trace macrocell lcd liquid crystal display lin local interconnect network, a communications protocol. lr link register lut lookup table lvd low-voltage detect, see also lvi lvi low-voltage interrupt, see also hvi lvttl low-voltage transistor-transistor logic mac multiply-accumulate mcu microcontroller unit miso master-in slave-out nc no connect nmi nonmaskable interrupt nrz non-return-to-zero nvic nested vectored interrupt controller nvl nonvolatile latch, see also wol opamp operational amplifier pal programmable array logic, see also pld pc program counter pcb printed circuit board pga programmable gain amplifier phub peripheral hub phy physical layer picu port interru pt control unit table 14-1. acronyms us ed in this document (continued) acronym description
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 92 of 95 15. reference documents psoc? 3, psoc? 5 architecture trm psoc? 5 registers trm pla programmable logic array pld programmable logic device, see also pal pll phase-locked loop pmdd package material declaration data sheet por power-on reset prs pseudo random sequence ps port read data register psoc ? programmable system-on-chip? psrr power supply rejection ratio pwm pulse-width modulator ram random-access memory risc reduced-instruct ion-set computing rms root-mean-square rtc real-time clock rtl register transfer language rtr remote transmission request rx receive sar successive approximation register sc/ct switched capacitor/continuous time scl i 2 c serial clock sda i 2 c serial data s/h sample and hold sio special input/output, gpio with advanced features. see gpio. snr signal-to-noise ratio soc start of conversion sof start of frame table 14-1. acronyms us ed in this document (continued) acronym description spi serial peripheral interface, a communications protocol sr slew rate sram static random access memory sres software reset swd serial wire debug, a test protocol swv single-wire viewer td transaction descriptor, see also dma thd total harmonic distortion tia transimpedance amplifier trm technical reference manual ttl transistor-transistor logic tx transmit uart universal asynchronous transmitter receiver, a communications protocol udb universal digital block usb universal serial bus usbio usb input/output, psoc pins used to connect to a usb port vdac voltage dac, see also dac, idac wdt watchdog timer wol write once latch, see also nvl wres watchdog timer reset xres external reset i/o pin xtal crystal table 14-1. acronyms us ed in this document (continued) acronym description
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 93 of 95 16. document conventions 16.1 units of measure table 16-1. units of measure symbol unit of measure c degrees celsius db decibels ff femtofarads hz hertz kb 1024 bytes kbps kilobits per second khr kilohours khz kilohertz k kilohms ksps kilosamples per second lsb least significant bit mbps megabits per second mhz megahertz m megaohms msps megasamples per second a microamperes f microfarads h microhenrys s microseconds v microvolts w microwatts ma milliamperes ms milliseconds mv millivolts na nanoamperes ns nanoseconds nv nanovolts ohms pf picofarads ppm parts per million ps picoseconds s seconds sps samples per second sqrthz square root of hertz vvolts
preliminary psoc ? 5: cy8c52 family datasheet document number: 001-66236 rev. *a page 94 of 95 17. revision history description title: psoc ? 5: cy8c52 family datasheet programmable system-on-chip (psoc ? ) document number: 001-66236 rev. ecn no. submission date orig. of change description of change ** 3198501 03/17/2011 mkea new data sheet. *a 3279676 06/10/2011 mkea changed mhzeco range updated flash and eeprom ac specs added solder reflow peak temperature table changed idac idd numbers and vdac added flash retention specs added jtag and swd interface diagrrams removed mention of comparator wakeup from sleep updated psoc power system diagram updated clocking sections removed references to jtag interface updated i/o graphs added note that interrupt specs are arm specs changed jtag and swd max speeds modified ilo startup time removed references to etm and traceport updated idac range limits updated vddio pin description updated power modes section added note on watchdog timer in the reset section updaed esd hbm value updated boost converter section
document number: 001-66236 rev. *a revised june 10, 2011 page 95 of 95 capsense ? , psoc ? 3, psoc ? 5, and psoc ? creator? are trademarks and psoc ? is a registered trademark of cypress semiconductor corp. all other trademarks or registered trademarks referenced herein are property of the respective corporations. purchase of i2c components from cypress or one of its sublic ensed associated companies conveys a license under the philips i2c patent rights to use these components in an i2c system, provided that the system conforms to the i2c standard specification as defined by philips. arm is a registered trademark, and keil, and realview are trademarks, of arm limited. all products and company names mentioned in this document may be the trad emarks of their respective holders. preliminary psoc ? 5: cy8c52 family datasheet ? cypress semiconductor corporation, 2011. the information contained herein is subject to change without notice. cypress semico nductor corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a cypress product. nor does it convey or imply any license under patent or other rig hts. cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with cypres s. furthermore, cypress does not authorize its products for use as critical components in life-support systems where a ma lfunction or failure may reasonably be expe cted to result in significant injury to the user. the inclusion of cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies cypress against all charges. any source code (software and/or firmware) is owned by cypress semiconductor corporation (cypress) and is protected by and subj ect to worldwide patent protection (united states and foreign), united states copyright laws and internatio nal treaty provisions. cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the cypress source code and derivative works for the sole purpose of creating custom software and or firmware in su pport of licensee product to be used only in conjunction with a cypress integrated circuit as specified in the applicable agreement. any reproduction, modification, translation, compilation, or repre sentation of this source code except as specified above is prohibited without the express written permission of cypress. disclaimer: cypress makes no warranty of any kind, express or implied, with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. cypress reserves the right to make changes without further notice to t he materials described herein. cypress does not assume any liability arising out of the application or use of any product or circuit described herein. cypress does not authori ze its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. the inclusion of cypress? prod uct in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies cypress against all charges. use may be limited by and subject to the applicable cypress software license agreement. 18. sales, solutions , and legal information worldwide sales and design support cypress maintains a worldwide network of offices, solution cent ers, manufacturers? representatives, and distributors. to find t he office closest to you, visit us at cypress locations . products automotive cypress.com/go/ automotive clocks & buffers cypress.com/go/clocks interface cypress.com/go/ interface lighting & power control cypress.com/go/ powerpsoc cypress.com/ go/plc memory cypress.com/go/ memory optical & image sensing cypress.com/go/ image psoc cypress.com/go/psoc touch sensing cypress.com/go/ touch usb controllers cypress.com/go/ usb wireless/rf cypress.com/go/ wireless psoc solutio ns psoc.c ypress.com/solution s psoc 1 | psoc 3 | psoc 5


▲Up To Search▲   

 
Price & Availability of CY8C5248LTI-030

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X